7 research outputs found

    Distinguishing Ewing sarcoma and osteomyelitis using FTIR spectroscopy

    Get PDF
    Abstract The differential diagnosis of Ewing sarcoma and osteomyelitis can be challenging and can lead to delays in treatment with possibly devastating results. In this retrospective, small-cohort study we demonstrate, that the Fourier Transformed Infrared (FTIR) spectra of osteomyelitis bone tissue can be differentiated from Ewing sarcoma and normal bone tissue sampled outside tumour area. Significant differences in osteomyelitis samples can be seen in lipid and protein composition. Supervised learning using a quadratic discriminant analysis classifier was able to differentiate the osteomyelitis samples with high accuracy. FTIR spectroscopy, alongside routine radiological and histopathological methods, may offer an additional tool for the differential diagnosis of osteomyelitis and ES

    Predicting Ewing Sarcoma Treatment Outcome Using Infrared Spectroscopy and Machine Learning

    No full text
    Background: Improved outcome prediction is vital for the delivery of risk-adjusted, appropriate and effective care to paediatric patients with Ewing sarcoma—the second most common paediatric malignant bone tumour. Fourier transform infrared (FTIR) spectroscopy of tissues allows the bulk biochemical content of a biological sample to be probed and makes possible the study and diagnosis of disease. Methods: In this retrospective study, FTIR spectra of sections of biopsy-obtained bone tissue were recorded. Twenty-seven patients (between 5 and 20 years of age) with newly diagnosed Ewing sarcoma of bone were included in this study. The prognostic value of FTIR spectra obtained from Ewing sarcoma (ES) tumours before and after neoadjuvant chemotherapy were analysed in combination with various data-reduction and machine learning approaches. Results: Random forest and linear discriminant analysis supervised learning models were able to correctly predict patient mortality in 92% of cases using leave-one-out cross-validation. The best performing model for predicting patient relapse was a linear Support Vector Machine trained on the observed spectral changes as a result of chemotherapy treatment, which achieved 92% accuracy. Conclusion: FTIR spectra of tumour biopsy samples may predict treatment outcome in paediatric Ewing sarcoma patients with greater than 92% accuracy

    A Preliminary Study of FTIR Spectroscopy as a Potential Non-Invasive Screening Tool for Pediatric Precursor B Lymphoblastic Leukemia

    No full text
    Early detection of the most common pediatric neoplasm, B-cell precursor lymphoblastic leukemia (BCP-ALL), is challenging and requires invasive bone marrow biopsies. The purpose of this study was to establish new biomarkers for early screening to detect pediatric leukemia. In this small cohort study, Fourier transform infrared (FTIR) spectra were obtained from blood sera of 10 patients with BCP-ALL and were compared with the control samples from 10 children with some conditions other than neoplasm. Using various analytical approaches, including a new physical model, some significant differences were observable. The most important include: the different peak area ratio 2965/1645 cm−1 (p = 0.002); the lower average percentage of both β-sheet and β-turn protein structures in the sera of BCP-ALL patients (p = 0.03); an AdaBoost-based predictive model for classifying healthy vs. BCP-ALL patients with 85% accuracy; and the phase shift of the first derivative in the spectral range 1050–1042 cm−1 correlating with white blood cell (WBC) and blast cell count in BCP-ALL patients contrary to the samples obtained from healthy controls. Although verification in larger groups of patients will be necessary, these promising results suggest that FTIR spectroscopy may have future potential for the early screening of BCP-ALL

    Hounsfield units and fractal dimension (test HUFRA) for determining PET positive/negative lymph nodes in pediatric Hodgkin's lymphoma patients.

    No full text
    OBJECTIVES:We had developed a method that can help detect and identify lymph nodes affected by the neoplastic process. Our group evaluated the fractal dimension (FD) and X-ray attenuation (XRA) of lymph nodes in HL and compared to their metabolic activity as measured by 18F-FDG-PET examination. METHODS:The training set included 72 lymph nodes from 31 consecutive patients, and the tested set of 71 lymph nodes from next 19 patients. The measurement of FD of each lymph node was performed before the start of therapy using original software. X-ray attenuation (XRA) expressed in HU (Hounsfield Units) from CT scans was compared with the metabolic activity of the lymphatic nodes, measured by 18F-FDG-PET examination. RESULTS:Significant differences were observed between XRAmax and FDmax values in assessing the PET(+) and PET(-) nodes. All nodes were scored from 0 to 2. The HUFRA test properly qualified 95% with a score of 2 and 0 points as PET(+) or PET(-). CONCLUSION:The HUFRA test can differentiate about 70-80% of lymph nodes as PET(+) or PET(-) based solely on the CT examination. It can be useful in patients who were not subjected to 18FFDG-PET/CT examination before the treatment, or who had an unreliable result of 18F-FDG-PET/CT with further research requirements
    corecore