2 research outputs found

    Diffusion-based hierarchical multi-label object detection to analyze panoramic dental X-rays

    Get PDF
    Due to the necessity for precise treatment planning, the use of panoramic X-rays to identify different dental diseases has tremendously increased. Although numerous ML models have been developed for the interpretation of panoramic X-rays, there has not been an end-to-end model developed that can identify problematic teeth with dental enumeration and associated diagnoses at the same time. To develop such a model, we structure the three distinct types of annotated data hierarchically following the FDI system, the first labeled with only quadrant, the second labeled with quadrant-enumeration, and the third fully labeled with quadrant-enumeration-diagnosis. To learn from all three hierarchies jointly, we introduce a novel diffusion-based hierarchical multi-label object detection framework by adapting a diffusion-based method that formulates object detection as a denoising diffusion process from noisy boxes to object boxes. Specifically, to take advantage of the hierarchically annotated data, our method utilizes a novel noisy box manipulation technique by adapting the denoising process in the diffusion network with the inference from the previously trained model in hierarchical order. We also utilize a multi-label object detection method to learn efficiently from partial annotations and to give all the needed information about each abnormal tooth for treatment planning. Experimental results show that our method significantly outperforms state-of-the-art object detection methods, including RetinaNet, Faster R-CNN, DETR, and DiffusionDet for the analysis of panoramic X-rays, demonstrating the great potential of our method for hierarchically and partially annotated datasets. The code and the datasets are available at https://github.com/ibrahimethemhamamci/HierarchicalDet.Helmut Horten Stiftun

    Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning

    Get PDF
    Abstract In this paper, a new powerful deep learning framework, named as DENTECT, is developed in order to instantly detect five different dental treatment approaches and simultaneously number the dentition based on the FDI notation on panoramic X-ray images. This makes DENTECT the first system that focuses on identification of multiple dental treatments; namely periapical lesion therapy, fillings, root canal treatment (RCT), surgical extraction, and conventional extraction all of which are accurately located within their corresponding borders and tooth numbers. Although DENTECT is trained on only 1005 images, the annotations supplied by experts provide satisfactory results for both treatment and enumeration detection. This framework carries out enumeration with an average precision (AP) score of 89.4% and performs treatment identification with a 59.0% AP score. Clinically, DENTECT is a practical and adoptable tool that accelerates the process of treatment planning with a level of accuracy which could compete with that of dental clinicians
    corecore