62 research outputs found

    Using virtual software applications in education

    Get PDF
    Centar za permanentno obrazovanje kao deo Instituta za nuklearne nauke "Vinča" se dugi niz godina bavi dopunskim stručnim obrazovanjem i osposobljavanjem stručnjaka multidisciplinarnih profila koji u svom radu koriste radioaktivne materijale i generatore jonizujućih zračenja. Zajedničko za sve kurseve u Centru, osim visokog kvaliteta obuke, je i stalno praćenje i uvoĎenje savremenih i novih metoda edukacije. Sve veći razvoj informacionih tehnologija uticao je i na razvoj metoda i tehnika u samomobrazovanju. Najnoviji trend u edukaciji je da se realne laboratorije zamenjuju virtuelnim laboratorijama. Zaposleni u Centru za permanentno obrazovanje odlučili su da svoje kurseve oplemene i obogate primenom virtuelnih programskih aplikacija koje će pomoći da se polaznicima kurseva na jednostavan, lak i zabavan način približe osnovni pojmovi vezani za siguran i bezbedan rad sa radioaktivnim izvorima i generatorima jonizujućih zračenja poštujući sve mere zaštite od jonizujućih zračenja. U ovom radu prikazane su neke od virtuelnih aplikacija koje se koristeu okviru praktičnih vežbi na kursevima iz oblasti osnova radijacione fizike i osnovnih principa zaštite od jonizujućih zračenja.Center for permanent education (CPE) of the "Vinča" Institute of nuclear sciences is a unique educational institution in Serbia. The main objective of the CPE is an additional and complementary education of various profiles of specialists who use radioactive isotopes and sources of ionizing radiation in their everyday work. The CPE aims to improve the quality of its services and strives to continuously follow and introduce modern and new methods of education. The increasing development of information technologies has influenced the development of methods and techniques in the education itself. The latest trend in education is to replace the real laboratories with the virtual ones. The employees of the Center for Permanent Education have, therefore, decided to enrich the CPE courses with virtual software applications. Their use explains the basic concepts of ionizing radiation protection and safety in a simple, easy and fun way. In this paper, we describe some of the virtual software applications that are used in the laboratory curriculum of the CPE courses aimed at furthering education of professionals who work with radioactive sources and generators of ionizing radiation.Proceedings: [http://vinar.vin.bg.ac.rs/handle/123456789/8681]XXX симпозијум ДЗЗСЦГ (Друштва за заштиту од зрачења Србије и Црне Горе), 2- 4. октобар 2019. године, Дивчибаре, Србиј

    Using virtual software applications in education

    Get PDF
    Centar za permanentno obrazovanje kao deo Instituta za nuklearne nauke "Vinča" se dugi niz godina bavi dopunskim stručnim obrazovanjem i osposobljavanjem stručnjaka multidisciplinarnih profila koji u svom radu koriste radioaktivne materijale i generatore jonizujućih zračenja. Zajedničko za sve kurseve u Centru, osim visokog kvaliteta obuke, je i stalno praćenje i uvoĎenje savremenih i novih metoda edukacije. Sve veći razvoj informacionih tehnologija uticao je i na razvoj metoda i tehnika u samomobrazovanju. Najnoviji trend u edukaciji je da se realne laboratorije zamenjuju virtuelnim laboratorijama. Zaposleni u Centru za permanentno obrazovanje odlučili su da svoje kurseve oplemene i obogate primenom virtuelnih programskih aplikacija koje će pomoći da se polaznicima kurseva na jednostavan, lak i zabavan način približe osnovni pojmovi vezani za siguran i bezbedan rad sa radioaktivnim izvorima i generatorima jonizujućih zračenja poštujući sve mere zaštite od jonizujućih zračenja. U ovom radu prikazane su neke od virtuelnih aplikacija koje se koristeu okviru praktičnih vežbi na kursevima iz oblasti osnova radijacione fizike i osnovnih principa zaštite od jonizujućih zračenja.Center for permanent education (CPE) of the "Vinča" Institute of nuclear sciences is a unique educational institution in Serbia. The main objective of the CPE is an additional and complementary education of various profiles of specialists who use radioactive isotopes and sources of ionizing radiation in their everyday work. The CPE aims to improve the quality of its services and strives to continuously follow and introduce modern and new methods of education. The increasing development of information technologies has influenced the development of methods and techniques in the education itself. The latest trend in education is to replace the real laboratories with the virtual ones. The employees of the Center for Permanent Education have, therefore, decided to enrich the CPE courses with virtual software applications. Their use explains the basic concepts of ionizing radiation protection and safety in a simple, easy and fun way. In this paper, we describe some of the virtual software applications that are used in the laboratory curriculum of the CPE courses aimed at furthering education of professionals who work with radioactive sources and generators of ionizing radiation.Proceedings: [http://vinar.vin.bg.ac.rs/handle/123456789/8681]XXX симпозијум ДЗЗСЦГ (Друштва за заштиту од зрачења Србије и Црне Горе), 2- 4. октобар 2019. године, Дивчибаре, Србиј

    Achieved results in radiation protection education of the Center for Permanent Education INN “Vinča”

    Get PDF
    The Center for permanent education (CPE) of the “Vinča” Institute of nuclear sciences is a unique educational institution in Serbia. The main objective of the CPE is an additional and complementary education of various profiles of specialists who use radioactive isotopes and sources of ionizing radiation in their everyday work in accordance with the Law on Radiation and Nuclear Safety and Security of Serbia. Application of ionizing radiation in various fields of activity (industry, medicine, scientific research) carries the appropriate risks to the health and safety of those who work with ionizing radiation sources. It is therefore crucial that the handling of radioactive sources and ionizing radiation generators, as well as the handling of nuclear waste, be in line with certain safety standards aimed at protecting those exposed to ionizing radiation. Center for Permanent Education is authorized by the Directorate for Radiation and Nuclear Safety and Security of Serbia to provide additional training and education for occupationally exposed persons and persons responsible for implementing measures radiation protection. Accordingly, the activities of the Center are focused on the organization of different types of courses, depending on the category of a particular radiation activity. Permanent education program defines: additional and appropriate training before beginning work with radiation sources, training of persons responsible for implementing radiation protection measures, and periodic renewal of knowledge provided for all occupationally exposed persons at least once in five years. The special type of courses refers to courses for work with open sources of radiation, where longer and more detailed training is required. The aim of this work is to present the achieved results related to the number of held courses and the number of participants between 2011 and 2020, as well as years with the most and the least held courses and years with the largest and the smallest number of participants. These numbers have been changed in accordance with the requirements of legal regulations related to radiation protection. The Center for permanent education has worked since 1956, but information about all courses and candidates have been kept within database program only since 2011. During that period, 1503 different courses were held related to radiation protection. The most courses (272) were held in 2018 and the least (43) in 2011. Regarding the number of candidates, 5805 candidates completed the courses in the period between 2011 and to 2020. The largest number of candidates (1036) were in 2018, and the smallest (185) in 2013. The CPE aims to improve the quality of its services and strives to continuously follow and introduce modern and new methods of education for the next period.IX International Conference on Radiation in Various Fields of Research : RAD 2021 : book of abstracts; June 14-18, 2021; Herceg Novi, Montenegr

    Analysing radionuclide content in soil samples and radiological risks in the clayey material surrounding of the “Zbegovi” deposit, Donje Crniljevo, Serbia

    Get PDF
    This paper presents the results of analyses of radionuclide content in the samples of the surrounding soil and clayey material of “Zbegovi” open-pit mine in Donje Crniljevo, Serbia. Samples from 78 sites were collected and prepared. The activity concentrations were determined for radionuclides: 238U, 232Th, 40K, 226Ra, and 137Cs. The mean values obtained are as follows: 23 Bqkg–1, 89 Bqkg–1, 372 Bqkg–1, 56 Bqkg–1, and 11 Bqkg–1, respectively. Concentrations of 238U, 40K, and 226Ra in the studied area do not deviate from the values obtained for the soil in Serbia. The concentration of 232Th in the studied area is slightly higher relative to average values for soil, and slightly lower compared to similar deposits of clayey material in the world. Measurements performed showed that the open-pit mine of clayey material is completely uncontaminated surface as far as 137Cs is concerned, while there are sites where measured 137Cs concentrations are significantly higher, which is due to topographic differences and inhomogeneous surface contamination of land after the Chernobyl accident. To assess the radiological risks in the observed area, the following indices were determined: absorbed dose rate, annual outdoor effective dose, absorbed dose for biota, excess lifetime cancer risk outdoors as well as external radiation hazard index. The mean value of the estimated absorbed dose rate in the given area amounts to 80.1 nGyh–1, and the annual outdoor effective dose ranges from 46.9 to 134 Sv. Absorbed dose rate for biota in the studied area is 1.31 10–4 Gyd–1. The mean excess lifetime cancer risk outdoors for the population is 3.8 10–4, and t he mean value of the external radiation hazard index obtained in this study is 0.48, which is consistent with the world average. A low dose of radiation will not pose a risk to the population and biota in the studied area

    Optimal conditions for a ZnS(Ag) scintillation detector operation

    Get PDF
    The methods that use scintillation counting with ZnS(Ag) scintillation detector are widely used for gross alpha activity determination. Optimal counting conditions could be provided by properly setting of operating voltage and by this means, the long term stability could be achieved. The common criteria for the selection of optimal counting conditions for a ZnS(Ag) scintillation detector do not consider simultaneously operating voltage and discrimination level variation. In present method a relationship between voltage supply and discrimination level is derived for counting efficiency.Proceedings of the 4th international Balkan school on nuclear physics; Sept. 22-29, 2004; Bodrum (Turkey

    Determination of coincidence summing correction factors for 22na point source

    Get PDF
    The coincidence summing effect plays an important role in HPGe spectrometry, especially at low source-detector distances, due to a large solid angle; therefore, the calculation of correction factors is necessary. The aim of the research described in this paper was to compare values of correction factors for a 22Na point source obtained using the GESPECOR software package (Monte-Carlo method) and experimentally obtained values. Measurements were performed using a semiconductor HPGe spectrometer and the point source axially positioned at nine different distances from the detector end-cap. For the purpose of determining correction factors, a system of equations was formed, which, besides nuclear data as the input parameters, uses the experimentally obtained values of the total count in the entire spectrum, as well as the counts in the full energy peaks. The system of equations was solved for each particular case and correction factors were determined. By comparing the results obtained using the experimental and Monte-Carlo method, it was found that the correction factors for the 22Na point source have discrepancies less than 3%. The significance of these discrepancies was also verified from a statistical point of view using a Student's t-test. © 2019 RAD Association. All rights reserved.Conference of 6th International Conference on Radiation and Applications in Various Fields of Research, RAD 2018 ; Conference Date: 18 June 2018 Through 22 June 2018; Conference Code:14955

    Optimal conditions for a ZnS(Ag) scintillation detector operation

    Get PDF
    The methods that use scintillation counting with ZnS(Ag) scintillation detector are widely used for gross alpha activity determination. Optimal counting conditions could be provided by properly setting of operating voltage and by this means, the long term stability could be achieved. The common criteria for the selection of optimal counting conditions for a ZnS(Ag) scintillation detector do not consider simultaneously operating voltage and discrimination level variation. In present method a relationship between voltage supply and discrimination level is derived for counting efficiency.Proceedings of the 4th international Balkan school on nuclear physics; Sept. 22-29, 2004; Bodrum (Turkey

    Određivanje izotopa plutonijuma u prizemnim slojevima vazduha na lokaciji Vinča-Beograd u periodu černobiljskog akcidenta

    Get PDF
    Током друге половине двадесетог века у циљу редовног праћења концентрације радионуклида у аеросолима, вршена су узорковања ваздуха на четири места на локацији Института за нуклеарне науке „Винча“. У време узорковања одређивана је укупна бета активност дневних узорака аеросола на филтер папиру. Како је бета спектрометрија/бројање недеструктивна метода исти узорци су касније искоришћени за алфаспектрометријска мерења. У узорцима ваздуха из периода интензивних надземних нуклеарних проба, као и из периода непосредно након чернобиљског акцидента, током 90-тих година двадесетог века у Лабораторији за нуклеарну и плазма физику одређивана је концентрација изотопа плутонијума алфаспектрометријском методом. Узорковање ваздуха вршено је помоћу пумпе са филтерима. Две године након Чернобиља узорци ваздуха прикупљани током маја 1986. године, су прво мерени на полупроводничком HPGe спектрометру и детектовани су следећи вештачки радионуклиди: 137Cs, 134Cs, 106Ru, 125Sb, 144Ce и 110mAg. Максималне концентрације цезијумових изотопа детектоване су у периоду 02-03. маја, док је други максимум детектован 06. маја. Након гамаспектрометријских, урађена су и алфаспектрометријска мерења. Максималне концентрације 238Pu и 239,240Pu детектоване су у периоду 01-07. маја 1986. године, што одговара хронолошки максимално измереним концентрацијама цезијума. Добијени резултати били су у сагласности са доступним резултатима измереним на локацијама Прага, Минхена и Париза за исти временски период. У узорцима сакупљаним током 1987. и 1989. године, концентрације изотопа плутонијума биле су на граници детекције, осим у пролећном периоду када има највише падавина. Непосредно након чернобиљског акцидента, највећи допринос укупној активности плутонијума у околини потицао је од 241Pu, чистог бета емитера. Мерење овог изотопа може се вршити течним сцинтилационим детектором или масеним спектрометром, који нису били доступни у Институту, те овај радионуклид није ни мерен. Међутим, исти електродепоновани алфа извори плутонијума, припремани почетком деведесетих година прошлог века, поново су мерени алфаспектрометријски током 2004. и 2005. године. Како је од сепарације плутонијума из узорака ваздуха прошло десетак година, што је поредиво са релативно кратким периодом полураспада 241Pu, створени су услови да се концентрација 241Pu у ваздуху одреди преко његовог потомка - 241Am. Активност насталог америцијума одређивана је на основу измерене активности 228Th, и прорачунатог доприноса потомака трасера 236Pu помоћу Bateman-ових једначина. Добијени односи 241Pu/239,240Pu налазе се у границама цитираним у литератури. Резултати вишегодишњих мерења објављени су у више публикација у међународним часописима, као и у саопштењима на домаћим и међународним конференцијама. У овом раду је дата свеобухватна анализа поступака за припрему узорака, процедура радиохемијке сепарације изотопа плутонијума из узорака ваздуха, технике припреме алфаспектроскопски танких извора, специфичности поступака анализе снимљених спектара, као и анализа добијених резултата за специфичне активности изотопа 238Pu, 239,240Pu и 241Pu.For the purpose of regular monitoring of the concentration of radionuclides in aerosols, air sampling was carried out during the second half of XX century in four places at the Institute „Vinča“ site. Gross beta activities of the aerosols were determined daily. Since beta counting is not destructive method, these samples were subsequently used for the alpha spectrometric measurements. Determination of fallout plutonium, as well as plutonium originated from the Chernobyl accident were performed by alpha spectrometry in the Laboratory for nuclear and plasma physics. Air sampling was performed by pumps with filters. Air samples collected during May 1986 were measured by semiconductor HPGe spectrometer, and the following artificial radionuclides: 137Cs, 134Cs, 106Ru, 125Sb, 144Ce and 110mAg were detected. Maximal concentration of cesium isotopes were observed on 02-03 May, while second maximum was detected on 06 May. Alphaspectrometric measurements of plutonium isotopes indicated also that maximal concentration of 238Pu and 239,240Pu occurred in the period 01-07 May. Obtained results were in agreement with ones reported in literature for locations of Prague, Munich, and Paris for the same period. Monitoring of air during 1987 and 1989 showed that plutonium isotopes concentrations were below minimal detectable values, except in spring time due to abundant precipitation. The same plutonium sources, prepared during the 90s were re-measured in 2004 and 2005, in order to determine concentration of 241Pu (pure beta emitter) by alpha spectrometry using “Am in-growth Method”. Activity of in-growth americium was determined experimentally, based on measured activity of 228Th, and additionally calculated using the contribution of 236Pu (used as a tracer) descendants obtained by the Bateman’s equations. Obtained activity ratios 241Pu/239,240Pu were within the limits cited in the literature. The result of perennial measurement have been published in several publications in international journals, and presented at numerous national and international conferences. Comprehensive analysis of sample preparation, radiochemical procedure of plutonium separation from air samples, alpha - sources preparation techniques, analysis of recorded spectra, as well as analysis of obtained results for 238Pu, 239,240Pu and 241Pu concentrations are presented in this paper.Article is part of: [http://vinar.vin.bg.ac.rs/handle/123456789/8230

    Determination of radionuclide concentrations in soil and black walnut leaves and fruit using gamma-ray spectrometry

    Get PDF
    This study showed that 137Cs concentrations in black walnut leaf and fruit, as well as in tinctures were below the detection limits. Concentrations of other radionuclides are lower than their concentrations in the soil, except for concentration of 40K in black walnut fruit, which objectively have more potassium due to the structure of the fruit. It indicates that the consumption of leaf and nut tinctureis absolutely safe, especially in relation to artificial radionuclides.X JUBILEE International Conference on Radiation in Various Fields of Research : RAD 2022 (Summer Edition) : book of abstracts; July 25-29, 2022; Herceg Novi, Montenegr

    Investigation of the radon exhalation rate: an influence of humidity and a grain size

    Get PDF
    U radu je merena ekshalacija radona iz bigra iz Niške Banje poznatom po povišenoj koncentraciji 226Ra. Bigar zbog svoje velike poroznosti i visoke koncentracije radijuma je idealan materijal za testiranje parametara od kojih zavisi brzina ekshalacije. U radu je razmatrana zavisnost ekshalacije u odnosu na vlažnost kao i na sprašenost uzorka. Brzina ekshalacije je merena metodom zatvorene komore, a sama koncentracija radona aktivnim uređajem. Dobijeni rezultati ukazuju da brzina ekshalacije raste sa povećanjem vlažnosti uzorka i smanjenjem veličine zrna.In this contribution, radon exhalation rate from travertine originating from Niška Banja, Serbia was measured. This particular travertine, with a high 226Ra concentration and high porosity, is ideal for testing various parameters that can influence radon exhalation rate. The radon exhalation rate was investigated for different sizes of grains. Grain sizes were dived into 4 groups: 1) 2.1 - 1.6 mm, 2.) 1.6 - 1.2 mm, 3.) 1.2 - 0.7 mm i 4.) < 0.7 mm. Influence of the humidity on radon exhalation rate was also investigated. Samples with the smallest grain size were exposed to 3 different levels of humidity (dry sample, and two samples in which water content was around 10% and 20% of the mass of dry sample. An accumulation chamber method with an active device RTM1688-2 was used to estimate radon exhalation rate from continuous measurement of radon in the chamber. Obtained results indicate that radon exhalation rate is increasing with an increase of humidity of the sample and with an decrease of grain size
    corecore