3 research outputs found

    An upwind-based scheme for solving the oblique derivative boundary-value problem related to physical geodesy

    No full text
    The paper presents a novel original upwindbased approach for solving the oblique derivative boundary value problem by the finite volume method. In this approach, the oblique derivative boundary condition is interpreted as a stationary advection equation for the unknown disturbing potential. Its approximation is then performed by using the first order upwind scheme taking into account information from inflow parts of the finite volume boundary only. When the numerical scheme is derived, numerical simulations in 2D and 3D domains are performed and the experimental order of convergence of the proposed algorithm is studied. Moreover a comparison with a solution by the central scheme previously used for this kind of problem is performed. Finally we present numerical experiments dealing with the global and local gravity field modelling

    Gravimetric quasigeoid in Slovakia by the finite element method

    Get PDF
    summary:The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by GPS/leveling method
    corecore