31 research outputs found

    Constraints on the Orbital Evolution of Triton

    Full text link
    We present simulations of Triton's post-capture orbit that confirm the importance of Kozai-type oscillations in its orbital elements. In the context of the tidal orbital evolution model, these variations require average pericenter distances much higher than previously published, and the timescale for the tidal orbital evolution of Triton becomes longer than the age of the Solar System. Recently-discovered irregular satellites present a new constraint on Triton's orbital history. Our numerical integrations of test particles indicate a timescale for Triton's orbital evolution to be less than 10510^5 yrs for a reasonable number of distant satellites to survive Triton's passage. This timescale is inconsistent with the exclusively tidal evolution (time scale of >108>10^8 yrs), but consistent with the interestion with the debris from satellite-satellite collisions. Any major regular satellites will quickly collide among themselves after being perturbed by Triton, and the resulting debris disk would eventually be swept up by Triton; given that the total mass of the Uranian satellite system is 40% of that of Triton, large scale evolution is possible. This scenario could have followed either collisional or the recently-discussed three-body-interaction-based capture.Comment: 10 pages, 4 figures, accepted for ApJ

    The energy budget and figure of Earth during recovery from the Moon-forming giant impact

    Get PDF
    Quantifying the energy budget of Earth in the first few million years following the Moon-forming giant impact is vital to understanding Earth's initial thermal state and the dynamics of lunar tidal evolution. After the impact, the body was substantially vaporized and rotating rapidly, very different from the planet we know today. The subsequent evolution of Earth's energy budget, as the body cooled and angular momentum was transferred during lunar tidal recession, has not been accurately calculated with all relevant energy components included. Here, we use giant impact simulations and planetary structure models to calculate the energy budget at stages in Earth's evolution. We show that the figure and internal structure of Earth changed substantially during its post-impact evolution and that changes in kinetic, potential, and internal energy were all significant. These changes have important implications for the dynamics of tidal recession and the thermal structure of early Earth
    corecore