38 research outputs found

    Automatic annotation of X-ray images: a study on attribute selection

    Get PDF
    Advances in the medical imaging technology has lead to an exponential growth in the number of digital images that need to be acquired, analyzed, classified, stored and retrieved in medical centers. As a result, medical image classification and retrieval has recently gained high interest in the scientific community. Despite several attempts, the proposed solutions are still far from being sufficiently accurate for real-life implementations. In a previous work, performance of different feature types were investigated in a SVM-based learning framework for classification. of X-Ray images into classes corresponding to body parts and local binary patterns were observed to outperform others. In this paper, we extend that work by exploring the effect of attribute selection on the classification performance. Our experiments show that principal component analysis based attribute selection manifests prediction values that are comparable to the baseline (all-features case) with considerably smaller subsets of original features, inducing lower processing times and reduced storage space

    Medical image retrieval and automatic annotation: VPA-SABANCI at ImageCLEF 2009

    Get PDF
    Advances in the medical imaging technology has lead to an exponential growth in the number of digital images that needs to be acquired, analyzed, classified, stored and retrieved in medical centers. As a result, medical image classification and retrieval has recently gained high interest in the scientific community. Despite several attempts, such as the yearly-held ImageCLEF Medical Image Annotation Competition, the proposed solutions are still far from being su±ciently accurate for real-life implementations. In this paper we summarize the technical details of our experiments for the ImageCLEF 2009 medical image annotation task. We use a direct and two hierarchical classification schemes that employ support vector machines and local binary patterns, which are recently developed low-cost texture descriptors. The direct scheme employs a single SVM to automatically annotate X-ray images. The two proposed hierarchi-cal schemes divide the classification task into sub-problems. The first hierarchical scheme exploits ensemble SVMs trained on IRMA sub-codes. The second learns from subgroups of data defined by frequency of classes. Our experiments show that hier-archical annotation of images by training individual SVMs over each IRMA sub-code dominates its rivals in annotation accuracy with increased process time relative to the direct scheme

    Binary and nonbinary description of hypointensity for search and retrieval of brain MR images

    Get PDF
    Diagnosis accuracy in the medical field, is mainly affected by either lack of sufficient understanding of some diseases or the inter/intra-observer variability of the diagnoses. We believe that mining of large medical databases can help improve the current status of disease understanding and decision making. In a previous study based on binary description of hypointensity in the brain, it was shown that brain iron accumulation shape provides additional information to the shape-insensitive features, such as the total brain iron load, that are commonly used in clinics. This paper proposes a novel, nonbinary description of hypointensity in the brain based on principal component analysis. We compare the complementary and redundant information provided by the two descriptions using Kendall's rank correlation coefficient in order to better understand the individual descriptions of iron accumulation in the brain and obtain a more robust and accurate search and retrieval system

    Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation

    Get PDF
    This paper presents a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. In biological tissues, such as the human brain, neighboring structures exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We present a set of 2D and 3D experiments as well as a quantitative performance analysis. In addition, we perform a comparison to several existent segmentation methods and demonstrate the improvements provided by our approach in terms of segmentation accuracy

    A watershed and active contours based method for dendritic spine segmentation in 2-photon microscopy images (2-Foton mikroskopi görüntülerindeki dendritik dikenlerin bölütlenmesi için watershed ve etkin çevritlere dayalı bir yöntem)

    Get PDF
    Analysing morphological and volumetric properties of dendritic spines from 2-photon microscopy images has been of interest to neuroscientists in recent years. Developing robust and reliable tools for automatic analysis depends on the segmentation quality. In this paper, we propose a new segmentation algorithm for dendritic spine segmentation based on watershed and active contour methods. First, our proposed method coarsely segments the dendritic spine area using the watershed algorithm. Then, these results are further refined using a region-based active contour approach. We compare our results and the results of existing methods in the literature to manual delineations of a domain expert. Experimental results demonstrate that our proposed method produces more accurate results than the existing algorithms proposed for dendritic spine segmentation

    Multi-object segmentation using coupled nonparametric shape and relative pose priors

    Get PDF
    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes

    Automatic dendritic spine detection using multiscale dot enhancement filters and sift features

    Get PDF
    Statistical characterization of morphological changes of dendritic spines is becoming of crucial interest in the field of neurobiology. Automatic detection and segmentation of dendritic spines promises significant reductions on the time spent by the scientists and reduces the subjectivity concerns. In this paper, we present two approaches for automated detection of dendritic spines in 2-photon laser scanning microscopy (2pLSM) images. The first method combines the idea of dot enhancement filters with information from the dendritic skeleton. The second method learns an SVM classifier by utilizing some pre-labeled SIFT feature descriptors and uses the classifier to detect dendritic spines in new images. For the segmentation of detected spines, we employ a watershed-variational segmentation algorithm. We evaluate the proposed approaches by comparing with manual segmentations of domain experts and the results of a noncommercial software, NeuronIQ. Our methods produce promising detection rate with high segmentation accuracy thus can serve as a useful tool for spine analysis

    A joint classification and segmentation approach for dendritic spine segmentation in 2-photon microscopy images

    Get PDF
    Shape priors have been successfully used in challenging biomedical imaging problems. However when the shape distribution involves multiple shape classes, leading to a multimodal shape density, effective use of shape priors in segmentation becomes more challenging. In such scenarios, knowing the class of the shape can aid the segmentation process, which is of course unknown a priori. In this paper, we propose a joint classification and segmentation approach for dendritic spine segmentation which infers the class of the spine during segmentation and adapts the remaining segmentation process accordingly. We evaluate our proposed approach on 2-photon microscopy images containing dendritic spines and compare its performance quantitatively to an existing approach based on nonparametric shape priors. Both visual and quantitative results demonstrate the effectiveness of our approach in dendritic spine segmentation

    On comparison of manifold learning techniques for dendritic spine classification

    Get PDF
    Dendritic spines are one of the key functional components of neurons. Their morphological changes are correlated with neuronal activity. Neuroscientists study spine shape variations to understand their relation with neuronal activity. Currently this analysis performed manually, the availability of reliable automated tools would assist neuroscientists and accelerate this research. Previously, morphological features based spine analysis has been performed and reported in the literature. In this paper, we explore the idea of using and comparing manifold learning techniques for classifying spine shapes. We start with automatically segmented data and construct our feature vector by stacking and concatenating the columns of images. Further, we apply unsupervised manifold learning algorithms and compare their performance in the context of dendritic spine classification. We achieved 85.95% accuracy on a dataset of 242 automatically segmented mushroom and stubby spines. We also observed that ISOMAP implicitly computes prominent features suitable for classification purposes
    corecore