38 research outputs found

    A Sensitive Quantification of HHV-6B by Real-time PCR

    Get PDF
    Human herpesvirus (HHV)-6B is a pathogen causing latent infection in virtually all humans. Nevertheless, the interaction of HHV-6B with its host cells is poorly understood. Although HHV-6B is approximately 90% homologous to HHV-6A, it expresses certain B-specific genes. In order to quantify the amount of expressed viral mRNA we have developed a method using real-time PCR on a LightCycler instrument. Here we describe an assay for the detection of the HHV-6B B6 mRNA, but our approach can easily be extended to involve other mRNAs. This method is useful during the study of HHV-6B biology and offers reliable and reproducible, quantitative detection of viral mRNA below the attomol range

    Human Herpesvirus 6B

    Get PDF
    Abstract Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after c irradiation in both permissive and nonpermissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following c irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein

    Tumor-specific usage of alternative transcription start sites in colorectal cancer identified by genome-wide exon array analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approximately half of all human genes use alternative transcription start sites (TSSs) to control mRNA levels and broaden the transcriptional output in healthy tissues. Aberrant expression patterns promoting carcinogenesis, however, may arise from alternative promoter usage.</p> <p>Results</p> <p>By profiling 108 colorectal samples using exon arrays, we identified nine genes (<it>TCF12, OSBPL1A, TRAK1, ANK3, CHEK1, UGP2, LMO7, ACSL5</it>, and <it>SCIN</it>) showing tumor-specific alternative TSS usage in both adenoma and cancer samples relative to normal mucosa. Analysis of independent exon array data sets corroborated these findings. Additionally, we confirmed the observed patterns for selected mRNAs using quantitative real-time reverse-transcription PCR. Interestingly, for some of the genes, the tumor-specific TSS usage was not restricted to colorectal cancer. A comprehensive survey of the nine genes in lung, bladder, liver, prostate, gastric, and brain cancer revealed significantly altered mRNA isoform ratios for <it>CHEK1, OSBPL1A</it>, and <it>TCF12 </it>in a subset of these cancer types.</p> <p>To identify the mechanism responsible for the shift in alternative TSS usage, we antagonized the Wnt-signaling pathway in DLD1 and Ls174T colorectal cancer cell lines, which remarkably led to a shift in the preferred TSS for both <it>OSBPL1A </it>and <it>TRAK1</it>. This indicated a regulatory role of the Wnt pathway in selecting TSS, possibly also involving TP53 and SOX9, as their transcription binding sites were enriched in the promoters of the tumor preferred isoforms together with their mRNA levels being increased in tumor samples.</p> <p>Finally, to evaluate the prognostic impact of the altered TSS usage, immunohistochemistry was used to show deregulation of the total protein levels of both TCF12 and OSBPL1A, corresponding to the mRNA levels observed. Furthermore, the level of nuclear TCF12 had a significant correlation to progression free survival in a cohort of 248 stage II colorectal cancer samples.</p> <p>Conclusions</p> <p>Alternative TSS usage in colorectal adenoma and cancer samples has been shown for nine genes, and <it>OSBPL1A </it>and <it>TRAK1 </it>were found to be regulated <it>in vitro </it>by Wnt signaling. TCF12 protein expression was upregulated in cancer samples and correlated with progression free survival.</p

    Viral Gene Expression Patterns in Human Herpesvirus 6B-Infected T Cells

    No full text
    Herpesvirus gene expression is divided into immediate-early (IE) or α genes, early (E) or β genes, and late (L) or γ genes on the basis of temporal expression and dependency on other gene products. By using real-time PCR, we have investigated the expression of 35 human herpesvirus 6B (HHV-6B) genes in T cells infected by strain PL-1. Kinetic analysis and dependency on de novo protein synthesis and viral DNA polymerase activity suggest that the HHV-6B genes segregate into six separate kinetic groups. The genes expressed early (groups I and II) and late (groups V and VI) corresponded well with IE and L genes, whereas the intermediate groups III and IV contained E and L genes. Although HHV-6B has characteristics similar to those of other roseoloviruses in its overall gene regulation, we detected three B-variant-specific IE genes. Moreover, genes that were independent of de novo protein synthesis clustered in an area of the viral genome that has the lowest identity to the HHV-6A variant. The organization of IE genes in an area of the genome that differs from that of HHV-6A underscores the distinct differences between HHV-6B and HHV-6A and may provide a basis for further molecular and immunological analyses to elucidate their different biological behaviors

    Induction of Cell-Cell Fusion from Without by Human Herpesvirus 6B

    No full text
    Human herpesvirus (HHV) 6A induce fusion from without (FFWO), whereas HHV-6B is believed to be ineffective in this process. Here, we demonstrate that HHV-6B induces rapid fusion in both epithelial cells and lymphocytes. The fusion was identified 1 h postinfection, could be inhibited by antibodies to HHV-6B gH and to the cellular receptor CD46, and was dependent on virus titer but independent of de novo protein synthesis and UV inactivation of the virus. Comparisons indicate that HHV-6A is only 10-fold more effective in inducing FFWO than HHV-6B. These data demonstrate that HHV-6B can induce FFWO in epithelial cells and lymphocytes
    corecore