2 research outputs found

    New method to study stochastic growth equations: a cellular automata perspective

    Full text link
    We introduce a new method based on cellular automata dynamics to study stochastic growth equations. The method defines an interface growth process which depends on height differences between neighbors. The growth rule assigns a probability pi(t)=ρp_{i}(t)=\rho exp[κΓi(t)][\kappa \Gamma_{i}(t)] for a site ii to receive one particle at a time tt and all the sites are updated simultaneously. Here ρ\rho and κ\kappa are two parameters and Γi(t)\Gamma_{i}(t) is a function which depends on height of the site ii and its neighbors. Its functional form is specified through discretization of the deterministic part of the growth equation associated to a given deposition process. In particular, we apply this method to study two linear equations - the Edwards-Wilkinson (EW) equation and the Mullins-Herring (MH) equation - and a non-linear one - the Kardar-Parisi-Zhang (KPZ) equation. Through simulations and statistical analysis of the height distributions of the profiles, we recover the values for roughening exponents, which confirm that the processes generated by the method are indeed in the universality classes of the original growth equations. In addition, a crossover from Random Deposition to the associated correlated regime is observed when the parameter κ\kappa is varied.Comment: 6 pages, 7 figure
    corecore