18 research outputs found

    Effect of aerobic exercise training and deconditioning on oxidative capacity and muscle mitochondrial enzyme machinery in young and elderly individuals

    Get PDF
    Mitochondrial dysfunction is thought to be involved in age-related loss of muscle mass and function (sarcopenia). Since the degree of physical activity is vital for skeletal muscle mitochondrial function and content, the aim of this study was to investigate the effect of 6 weeks of aerobic exercise training and 8 weeks of deconditioning on functional parameters of aerobic capacity and markers of muscle mitochondrial function in elderly compared to young individuals. In 11 healthy, elderly (80 ± 4 years old) and 10 healthy, young (24 ± 3 years old) volunteers, aerobic training improved maximal oxygen consumption rate by 13%, maximal workload by 34%, endurance capacity by 2.4-fold and exercise economy by 12% in the elderly to the same extent as in young individuals. This evidence was accompanied by a similar training-induced increase in muscle citrate synthase (CS) (31%) and mitochondrial complex I–IV activities (51–163%) in elderly and young individuals. After 8 weeks of deconditioning, endurance capacity (−20%), and enzyme activity of CS (−18%) and complex I (−40%), III (−25%), and IV (−26%) decreased in the elderly to a larger extent than in young individuals. In conclusion, we found that elderly have a physiological normal ability to improve aerobic capacity and mitochondrial function with aerobic training compared to young individuals, but had a faster decline in endurance performance and muscle mitochondrial enzyme activity after deconditioning, suggesting an age-related issue in maintaining oxidative metabolism

    Bezafibrate in skeletal muscle fatty acid oxidation disorders:A randomized clinical trial

    No full text
    OBJECTIVE: To assess whether bezafibrate increases fatty acid oxidation (FAO) and lowers heart rate (HR) during exercise in patients with carnitine palmitoyltransferase (CPT) II and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. METHODS: This was a 3-month, randomized, double-blind, crossover study of bezafibrate in patients with CPT II (n = 5) and VLCAD (n = 5) deficiencies. Primary outcome measures were changes in FAO, measured with stable-isotope methodology and indirect calorimetry, and changes in HR during exercise. RESULTS: Bezafibrate lowered low-density lipoprotein, triglyceride, and free fatty acid concentrations; however, there were no changes in palmitate oxidation, FAO, or HR during exercise. CONCLUSION: Bezafibrate does not improve clinical symptoms or FAO during exercise in patients with CPT II and VLCAD deficiencies. These findings indicate that previous in vitro studies suggesting a therapeutic potential for fibrates in disorders of FAO do not translate into clinically meaningful effects in vivo. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that bezafibrate 200 mg 3 times daily is ineffective in improving changes in FAO and HR during exercise in adults with CPT II and VLCAD deficiencies
    corecore