7 research outputs found
Anthropometrics of neonates born to mothers with PCOS with metformin or placebo exposure in utero
Introduction: Fetal growth may be affected by both maternal polycystic ovary syndrome (PCOS) and metformin therapy. Here, we explore the effect of intrauterine metformin exposure on birth anthropometrics of infants born to women with PCOS. We also investigated whether the effect of metformin on birth anthropometrics is modified by maternal pre-pregnancy body mass index, PCOS hyperandrogenic phenotype, serum androgen levels, preconception use of metformin and offspring sex. Additionally, we assessed newborn anthropometrics in relation to a national reference population.
Material and methods: Individual data from three randomized controlled triasl were pooled. The randomized controlled trials investigated the effects of metformin in pregnant women with PCOS. In all, 397 and 403 were randomized to the metformin and placebo groups, respectively. A Scandinavian growth reference was used to calculate sex and gestational age adjusted z-scores. Linear regression models were used to estimate the effect of metformin on offspring z-scores of head circumference, birth length, birthweight, placental weight, body mass index, ponderal index and birthweight:placental weight ratio. S-testosterone, s-androstenedione, and s-sex-hormone binding globulin from four timepoints in pregnancy were analyzed.
Results: Compared with the PCOS-placebo group, newborns in the PCOS-metformin group had larger head circumference (head circumference z-score: mean difference = 0.25, 95% CI = 0.11– 0.40). This effect of metformin on head circumference z-score was particularly observed among offspring of overweight/obese mothers and mothers with hyperandrogenic PCOS-phenotype. We observed no difference in other anthropometric measures between the metformin and placebo groups or any clear interaction between maternal androgen levels and metformin. Newborns in the PCOS-placebo group were shorter than in the reference population (birth length z-score: mean = −0.04, 95% CI = –0.05 to −0.03), but head circumference and birthweight were similar.
Conclusions: Larger head circumference was observed at birth in metformin-exposed offspring of mothers with PCOS. PCOS-offspring were also shorter, with a similar birthweight to the reference population, indirectly indicating higher weight-to-height ratio at birth.publishedVersio
Genetic associations with temporal shifts in obesity and severe obesity during the obesity epidemic in Norway:A longitudinal population-based cohort (the HUNT Study)
Background
Obesity has tripled worldwide since 1975 as environments are becoming more obesogenic. Our study investigates how changes in population weight and obesity over time are associated with genetic predisposition in the context of an obesogenic environment over 6 decades and examines the robustness of the findings using sibling design.
Methods and findings
A total of 67,110 individuals aged 13–80 years in the Nord-Trøndelag region of Norway participated with repeated standardized body mass index (BMI) measurements from 1966 to 2019 and were genotyped in a longitudinal population-based health study, the Trøndelag Health Study (the HUNT Study). Genotyping required survival to and participation in the HUNT Study in the 1990s or 2000s. Linear mixed models with observations nested within individuals were used to model the association between a genome-wide polygenic score (GPS) for BMI and BMI, while generalized estimating equations were used for obesity (BMI ≥ 30 kg/m2) and severe obesity (BMI ≥ 35 kg/m2).
The increase in the average BMI and prevalence of obesity was steeper among the genetically predisposed. Among 35-year-old men, the prevalence of obesity for the least predisposed tenth increased from 0.9% (95% confidence interval [CI] 0.6% to 1.2%) to 6.5% (95% CI 5.0% to 8.0%), while the most predisposed tenth increased from 14.2% (95% CI 12.6% to 15.7%) to 39.6% (95% CI 36.1% to 43.0%). Equivalently for women of the same age, the prevalence of obesity for the least predisposed tenth increased from 1.1% (95% CI 0.7% to1.5%) to 7.6% (95% CI 6.0% to 9.2%), while the most predisposed tenth increased from 15.4% (95% CI 13.7% to 17.2%) to 42.0% (95% CI 38.7% to 45.4%). Thus, for 35-year-old men and women, respectively, the absolute change in the prevalence of obesity from 1966 to 2019 was 19.8 percentage points (95% CI 16.2 to 23.5, p < 0.0001) and 20.0 percentage points (95% CI 16.4 to 23.7, p < 0.0001) greater for the most predisposed tenth compared with the least predisposed tenth, defined using the GPS for BMI. The corresponding absolute changes in the prevalence of severe obesity for men and women, respectively, were 8.5 percentage points (95% CI 6.3 to 10.7, p < 0.0001) and 12.6 percentage points (95% CI 9.6 to 15.6, p < 0.0001) greater for the most predisposed tenth. The greater increase in BMI in genetically predisposed individuals over time was apparent after adjustment for family-level confounding using a sibling design. Key limitations include a slightly lower survival to date of genetic testing for the older cohorts and that we apply a contemporary genetic score to past time periods. Future research should validate our findings using a polygenic risk score constructed from historical data.
Conclusions
In the context of increasingly obesogenic changes in our environment over 6 decades, our findings reveal a growing inequality in the risk for obesity and severe obesity across GPS tenths. Our results suggest that while obesity is a partially heritable trait, it is still modifiable by environmental factors. While it may be possible to identify those most susceptible to environmental change, who thus have the most to gain from preventive measures, efforts to reverse the obesogenic environment will benefit the whole population and help resolve the obesity epidemic
Early gut mycobiota and mother-offspring transfer
Abstract Background The fungi in the gastrointestinal tract, the gut mycobiota, are now recognised as a significant part of the gut microbiota, and they may be important to human health. In contrast to the adult gut mycobiota, the establishment of the early gut mycobiota has never been described, and there is little knowledge about the fungal transfer from mother to offspring. Methods In a prospective cohort, we followed 298 pairs of healthy mothers and offspring from 36 weeks of gestation until 2 years of age (1516 samples) and explored the gut mycobiota in maternal and offspring samples. Half of the pregnant mothers were randomised into drinking probiotic milk during and after pregnancy. The probiotic bacteria included Lactobacillus rhamnosus GG (LGG), Bifidobacterium animalis subsp. lactis Bb-12 and Lactobacillus acidophilus La-5. We quantified the fungal abundance of all the samples using qPCR of the fungal internal transcribed spacer (ITS)1 segment, and we sequenced the 18S rRNA gene ITS1 region of 90 high-quantity samples using the MiSeq platform (Illumina). Results The gut mycobiota was detected in most of the mothers and the majority of the offspring. The offspring showed increased odds of having detectable faecal fungal DNA if the mother had detectable fungal DNA as well (OR = 1.54, p = 0.04). The fungal alpha diversity in the offspring gut increased from its lowest at 10 days after birth, which was the earliest sampling point. The fungal diversity and fungal species showed a succession towards the maternal mycobiota as the child aged, with Debaryomyces hansenii being the most abundant species during breast-feeding and Saccharomyces cerevisiae as the most abundant after weaning. Probiotic consumption increased the gut mycobiota abundance in pregnant mothers (p = 0.01). Conclusion This study provides the first insight into the early fungal establishment and the succession of fungal species in the gut mycobiota. The results support the idea that the fungal host phenotype is transferred from mother to offspring. Trial registration Clinicaltrials.gov NCT0015952
Camp-based family treatment of childhood obesity: randomised controlled trial
Objective To compare the effectiveness of a 2-year camp-based family treatment programme and an outpatient programme on obesity in two generations.
Design Pragmatic randomised controlled trial.
Setting Rehabilitation clinic, tertiary care hospital and primary care.
Patients Families with at least one child (7–12 years) and one parent with obesity.
Interventions Summer camp for 2 weeks and 4 repetition weekends or lifestyle school including 4 days family education. Behavioural techniques motivating participants to healthier lifestyle.
Main outcome measures Children: 2-year changes in body mass index (BMI) SD score (SDS). Parents: 2-year change in BMI. Main analyses: linear mixed models.
Results Ninety children (50% girls) were included. Baseline mean (SD) age was 9.7 (1.2) years, BMI 28.7 (3.9) kg/m2 and BMI SDS 3.46 (0.75). The summer-camp children had a lower adjusted estimated mean (95% CI) increase in BMI (−0.8 (−3.5 to −0.2) kg/m2), but the BMI SDS reductions did not differ significantly (−0.11 (−0.49 to 0.05)). The 2-year baseline adjusted BMI and BMI SDS did not differ significantly between summer-camp and lifestyle-school completers, BMI 29.8 (29.1 to 30.6) vs 30.7 (29.8 to 31.6) kg/m2 and BMI SDS 2.96 (2.85 to 3.08) vs 3.11 (2.97 to 3.24), respectively. The summer-camp parents had a small reduction in BMI (−0.9 (−1.8 to −0.03) vs −0.8 (−2.1 to 0.4) in the lifestyle-school group), but the within-group changes did not differ significantly (0.3 (−1.7 to 2.2)).
Conclusions A 2-year family camp-based obesity treatment programme had no significant effect on BMI SDS in children with severe obesity compared with an outpatient family-based treatment programme
Camp-based family treatment of childhood obesity: randomised controlled trial
Objective To compare the effectiveness of a 2-year camp-based family treatment programme and an outpatient programme on obesity in two generations. Design Pragmatic randomised controlled trial. Setting Rehabilitation clinic, tertiary care hospital and primary care. Patients Families with at least one child (7–12 years) and one parent with obesity. Interventions Summer camp for 2 weeks and 4 repetition weekends or lifestyle school including 4 days family education . Behavioural techniques motivating participants to healthier lifestyle. Main outcome measures Children: 2-year changes in body mass index (BMI) SD score (SDS). Parents: 2-year change in BMI. Main analyses: linear mixed models. Results Ninety children (50% girls) were included. Baseline mean (SD) age was 9.7 (1.2) years, BMI 28.7 (3.9) kg/m 2 and BMI SDS 3.46 (0.75). The summer-camp children had a lower adjusted estimated mean (95% CI) increase in BMI (−0.8 (−3.5 to −0.2) kg/m 2 ), but the BMI SDS reductions did not differ significantly (−0.11 (−0.49 to 0.05)). The 2-year baseline adjusted BMI and BMI SDS did not differ significantly between summer-camp and lifestyle-school completers, BMI 29.8 (29.1 to 30.6) vs 30.7 (29.8 to 31.6) kg/m 2 and BMI SDS 2.96 (2.85 to 3.08) vs 3.11 (2.97 to 3.24), respectively. The summer-camp parents had a small reduction in BMI (−0.9 (−1.8 to −0.03) vs −0.8 (−2.1 to 0.4) in the lifestyle-school group), but the within-group changes did not differ significantly (0.3 (−1.7 to 2.2)). Conclusions A 2-year family camp-based obesity treatment programme had no significant effect on BMI SDS in children with severe obesity compared with an outpatient family-based treatment programme. Trial registration number NCT01110096
Camp-based family treatment of childhood obesity: randomised controlled trial
Objective To compare the effectiveness of a 2-year camp-based family treatment programme and an outpatient programme on obesity in two generations. Design Pragmatic randomised controlled trial.
Setting Rehabilitation clinic, tertiary care hospital and primary care.
Patients Families with at least one child (7–12 years) and one parent with obesity.
Interventions Summer camp for 2 weeks and 4 repetition weekends or lifestyle school including 4 days family education. Behavioural techniques motivating participants to healthier lifestyle.
Main outcome measures Children: 2-year changes in body mass index (BMI) SD score (SDS). Parents: 2-year change in BMI. Main analyses: linear mixed models. Results Ninety children (50% girls) were included. Baseline mean (SD) age was 9.7 (1.2) years, BMI 28.7 (3.9) kg/m2 and BMI SDS 3.46 (0.75). The summer-camp children had a lower adjusted estimated mean (95% CI) increase in BMI (−0.8 (−3.5 to −0.2) kg/m2), but the BMI SDS reductions did not differ significantly (−0.11 (−0.49 to 0.05)). The 2-year baseline adjusted BMI and BMI SDS did not differ significantly between summer- camp and lifestyle-school completers, BMI 29.8 (29.1 to 30.6) vs 30.7 (29.8 to 31.6) kg/m2 and BMI SDS 2.96 (2.85 to 3.08) vs 3.11 (2.97 to 3.24), respectively. The summer-camp parents had a small reduction in BMI (−0.9 (−1.8 to −0.03) vs −0.8 (−2.1 to 0.4) in the lifestyle-school group), but the within-group changes did not differ significantly (0.3 (−1.7 to 2.2)).
Conclusions A 2-year family camp-based obesity treatment programme had no significant effect on BMI SDS in children with severe obesity compared with an outpatient family-based treatment programme