38 research outputs found

    Mixed Convection of Hybrid Nanofluids in an Annulus

    Get PDF
     In this study, mixed convection in an annulus formed by two horizontal isothermal cylinder surfaces and filled with hybrid nanofluids was examined with Galerkin weighted residual finite element method. The outer cylinder is rotating and inner cylinder is stationary. Influence of Rayleigh number, angular rotational speed of the outer cylinder, eccentricity of the inner cylinder, solid volume fractions of different nanoparticles (alumina, copper, hybrid particles between 0 and 0.02) on the fluid flow and heat transfer characteristics were analyzed. It was observed that average heat transfer enhances with Rayleigh number, solid volume fractions of nanoparticles and eccentricity ratio and reduces as the angular rotational speed of the outer cylinder increases. Adding nanoparticles was found to be advantageous for lower values of Rayleigh number and higher values of angular rotational speed. At the highest volume fraction of Cu nanoparticles, average Nusselt number increases by 31.75 % when the inner cylinder center moves in +y direction. Nanofluid with hybrid nanoparticles gives heat transfer rates which are higher than that of with alumina and lower than that of with copper nanoparticles for the same volume fraction

    An analysis on Free Convection Cooling of a 3×3 Heater Array in Rectangular Enclosure using Cu-EG-Water Nanofluid

    Get PDF
    This paper deals with the study of natural convection cooling of a discrete heater array in Cu-EG-water nanofluid filled rectangular enclosure. A 3 × 3 array of non-protruding heat sources is embedded on one of the vertical walls of the enclosure while the top horizontal and opposite vertical walls are assumed to be isothermally cold. The remaining portions in which the heaters are mounted and all other walls are insulated. The above setup is modeled into a system of partial differential equations which are solved numerically using finite volume method based on the Semi-Implicit Method for Pressure Linked Equation (SIMPLE) algorithm and power law scheme. The wide range of parameters for computation are the aspect ratio of the enclosure, the mixture proportion of Ethylene glycol-water, the solid volume fraction of the nanoparticle along with two different thermal conductivity models. It is observed that the proper choice of the computation parameters and thermal conductivity models could be able to maximize the heat transfer rate from the heater array. Also, the results obtained in this study will provide new guidelines in the field of electronic equipment cooling

    Excitations of optically driven atomic condensate in a cavity: theory of photodetection measurements

    Full text link
    Recent experiments have demonstrated an open system realization of the Dicke quantum phase transition in the motional degrees of freedom of an optically driven Bose-Einstein condensate in a cavity. Relevant collective excitations of this light-matter system are polaritonic in nature, allowing access to the quantum critical behavior of the Dicke model through light leaking out of the cavity. This opens the path to using photodetection based quantum optical techniques to study the dynamics and excitations of this elementary quantum critical system. We first discuss the photon flux observed at the cavity face and find that it displays a different scaling law near criticality than that obtained from the mean field theory for the equivalent closed system. Next, we study the second order correlation measurements of photons leaking out of the cavity. Finally, we discuss a modulation technique that directly captures the softening of polaritonic excitations. Our analysis takes into account the effect of the finite size of the system which may result in an effective symmetry breaking term.Comment: 18 pages, 5 figure

    Analytical approach for entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    Get PDF
    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e. high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT- nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pump

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Analysis of the Melting Time of Phase Change Material in a Heat Exchanger with Sinusoidal Inner Duct

    No full text
    Three-dimensional computational analysis has been performed to investigate the melting time of the phase change material (PCM) in a sinusoidal pipe inserted into another pipe. The other pipe is filled with PCM and the system is heated from the inner sinusoidal pipe at different temperatures. The main aim of the study is to control the melting time. The finite volume method (FVM) is used to solve time-dependent governing equations. Four different cases are chosen for the sinusoidal wall to see the effects of geometry on melting. After the analysis, it is observed that melting time can be controlled via an adjustment of the geometrical parameter, namely a passive technique, without spending extra energy

    A Review on Non-Newtonian Nanofluid Applications for Convection in Cavities under Magnetic Field

    No full text
    This review is about non-Newtonian nanofluid applications for convection in cavities under a magnetic field. Convection in cavities is an important topic in thermal energy system, and diverse applications exist in processes such as drying, chemical processing, electronic cooling, air conditioning, removal of contaminates, power generation and many others. Some problems occur in symmetrical phenomena, while they can be applicable to applied mathematics, physics and thermal engineering systems. First, brief information about nanofluids and non-Newtonian fluids is given. Then, non-Newtonian nanofluids and aspects of rheology of non-Newtonian fluids are presented. The thermal conductivity/viscosity of nanofluids and hybrid nanofluids are discussed. Applications of non-Newtonian nanofluids with magnetohydrodynamic effects are given. Different applications of various vented cavities are discussed under combined effects of using nanofluid and magnetic field for Newtonian and non-Newtonian nanofluids. The gap in the present literature and future trends are discussed. The results summarized here will be beneficial for efficient design and thermal optimization of vented cavity systems used in diverse energy system applications

    Heat Transfer Enhancement through Thermodynamical Activity of H2O/Clay Nanofluid Flow over an Infinite Upright Plate with Caputo Fractional-Order Derivative

    No full text
    This paper presents a modelling of nanofluid flow using Caputo fractional derivatives through conservative equations of mass and momentum, and provides an exact solution on un-steady convective flow over a vertical plate with the mass diffusion effect, in association with an energy equation. H2O is the base liquid with clay nanoparticles floating in it in a uniform way. Boussinessq’s approach is used in the momentum equation for pressure gradient. The non-dimensional fluid temperature, species concentration and fluid transport are derived together with Jacob Fourier sine and Laplace transform techniques in terms of exponential decay function, and the inverse is computed further in terms of the Mittag-Leffler function. The impact of various physical quantities is interpreted with the fractional order of the Caputo derivatives. The obtained temperature, transport and species concentration profiles show behaviors for 0 < α < 1, where α is the fractional parameter. The rate of heat and mass transfer coefficients for the significance of physical quantities of interest are also obtained and presented through graphs. The impact of the nanoparticle volume fraction on the flow field is observed. At larger values of the fractional parameter, the velocity, temperature, and concentration distributions grow more quickly. In addition to that, it is found the concentration profiles behave in the opposite way for the volume fraction of nanofluids

    Computation of non-Newtonian quadratic convection in electro-magneto- hydrodynamic (EMHD) duct flow with temperature-dependent viscosity

    No full text
    Motivated by novel developments in smart non-Newtonian thermal duct systems, a theoretical study has been presented in this article for electro-magneto-hydrodynamic (EMHD) buoyancy-driven flow of a fourth-grade viscoelastic fluid in a vertical duct with quadratic convection. The viscosity of the fourth-grade fluid model is assumed to be temperature-dependent, and the Reynolds exponential model is deployed. Viscous heating and Joule dissipation effects are included. The duct comprises a pair of parallel electrically insulated vertical flat plates located a finite distance apart. Via suitable scaling transformations, a nonlinear boundary value problem is derived for the momentum and heat transport. A homotopy perturbation method (HPM) solution is obtained coded in Mathematica symbolic software. There is a considerable enhancement in wall skin friction with an increment in fourth-grade fluid parameter, Brinkman number, electrical field parameter, thermal buoyancy parameter and quadratic thermal convection parameter. However, skin friction is strongly reduced with a rise in variable viscosity parameter, Hartmann (magnetic) number, and electromagnetic heat generation to conduction ratio. Nusselt number magnitudes are elevated with increase in variable viscosity parameter, thermal buoyancy parameter and quadratic thermal convection parameter, whereas they are significantly suppressed with increment in fourth-grade fluid parameter, Brinkman number, Hartmann magnetic number
    corecore