2 research outputs found

    Simulation of multi-axis machining processes using z-mapping technique

    Get PDF
    Parameter selection in machining operations is curial for product quality and high productivity. Process parameters such as feed, spindle speed and depth of cuts are often chosen by trial-error methods. Mathematical models can be employed to predict the mechanics and the dynamics of the process. In this study, Z-mapping technique is utilized to simulate the process step by step by updating the workpiece according the given tool path where the cutter engagement areas are also determined. Using the numerical generalized process model, whole process is simulated for any milling tool geometry including intricate profiling tools, serrated cutters and tools with variable edge geometries

    Process simulation for five-axis machining for generalised milling tools

    No full text
    In this study, a general numerical model for five-axis machining is proposed covering all possible tool geometries. The proposed process model predicts total cutting forces acting on the tool given the cutter profile geometry, process conditions and material specifications without preliminary cutting operations. Tool envelope is extracted from CAD data, and helical flutes points are represented in cylindrical coordinates. Equal parallel slicing method is utilised to find cutter engagement boundaries (CEB) determining cutting region of the tool surface for each axial level in the tool axis direction. For each level uncut chip thickness value is found and total forces are calculated by summing force values for each point along the cutting flutes. For arbitrary cases forces are simulated and obtained results are experimentally verified
    corecore