2,527 research outputs found

    Quantum Fuel with Multilevel Atomic Coherence for Ultrahigh Specific Work in a Photonic Carnot Engine

    Full text link
    We investigate scaling of work and efficiency of a photonic Carnot engine with the number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science {\bf 299}, 862 (2003)], to the case of N+1N+1 level atoms with NN coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse grained master equation to evaluate the work and efficiency, analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.Comment: 15 pages, 8 figure

    Optical bistability in one dimensional doped photonic crystals with spontaneously generated coherence

    Full text link
    We investigate optical bistability in a multilayer one-dimensional photonic crystal where the central layer is doped with Λ\Lambda-type three level atoms. We take into account the influence of spontaneously generated coherence when the lower atomic levels are sufficiently close to each other, in which case Kerr-type nonlinear response of the atoms is enhanced. We calculate the propagation of a probe beam in the defect mode window using numerical nonlinear transfer matrix method. We find that Rabi frequency of a control field acting on the defect layer and the detuning of the probe field from the atomic resonance can be used to control the size and contrast of the hysteresis loop and the threshold of the optical bistability. In particular we find that, at the optimal spontaneously generated coherence, three orders of magnitude lower threshold can be achieved relative to the case without the coherence.Comment: 9 pages, 7 figure
    • …
    corecore