291 research outputs found
Shell Model Monte Carlo method in the -formalism and applications to the Zr and Mo isotopes
We report on the development of a new shell-model Monte Carlo algorithm which
uses the proton-neutron formalism. Shell model Monte Carlo methods, within the
isospin formulation, have been successfully used in large-scale shell-model
calculations. Motivation for this work is to extend the feasibility of these
methods to shell-model studies involving non-identical proton and neutron
valence spaces. We show the viability of the new approach with some test
results. Finally, we use a realistic nucleon-nucleon interaction in the model
space described by (1p_1/2,0g_9/2) proton and
(1d_5/2,2s_1/2,1d_3/2,0g_7/2,0h_11/2) neutron orbitals above the Sr-88 core to
calculate ground-state energies, binding energies, B(E2) strengths, and to
study pairing properties of the even-even 90-104 Zr and 92-106 Mo isotope
chains
Shell-Model Monte Carlo Simulations of BCS-BEC Crossover in Few-Fermion Systems
We study a trapped system of fermions with a zero-range two-body interaction
using the shell-model Monte Carlo method, providing {\em ab initio} results for
the low particle number limit where mean-field theory is not applicable. We
present results for the -body energies as function of interaction strength,
particle number, and temperature. The subtle question of renormalization in a
finite model space is addressed and the convergence of our method and its
applicability across the BCS-BEC crossover is discussed. Our findings indicate
that very good quantitative results can be obtained on the BCS side, whereas at
unitarity and in the BEC regime the convergence is less clear. Comparison to
N=2 analytics at zero and finite temperature, and to other calculations in the
literature for show very good agreement.Comment: 6 pages, 5 figures, Revtex4, final versio
Parity-Projected Shell Model Monte Carlo Level Densities for fp-shell Nuclei
We calculate parity-dependent level densities for the even-even isotopes
58,62,66 Fe and 58 Ni and the odd-A nuclei 59 Ni and 65 Fe using the Shell
Model Monte Carlo method. We perform these calculations in the complete fp-gds
shell-model space using a pairing+quadrupole residual interaction. We find
that, due to pairing of identical nucleons, the low-energy spectrum is
dominated by positive parity states. Although these pairs break at around the
same excitation energy in all nuclei, the energy dependence of the ratio of
negative-to-positive parity level densities depends strongly on the particular
nucleus of interest. We find equilibration of both parities at noticeably lower
excitation energies for the odd-A nuclei 59 Ni and 65 Fe than for the
neighboring even-even nuclei 58 Ni and 66 Fe.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal (2019), doi:10.1038/s41396-019-0373-4.The benthos in estuarine environments often experiences periods of regularly occurring hypoxic and anoxic conditions, dramatically impacting biogeochemical cycles. How oxygen depletion affects the growth of specific uncultivated microbial populations within these diverse benthic communities, however, remains poorly understood. Here, we applied H218O quantitative stable isotope probing (qSIP) in order to quantify the growth of diverse, uncultured bacterial populations in response to low oxygen concentrations in estuarine sediments. Over the course of 7- and 28-day incubations with redox conditions spanning from hypoxia to euxinia (sulfidic), 18O labeling of bacterial populations exhibited different patterns consistent with micro-aerophilic, anaerobic, facultative anaerobic, and aerotolerant anaerobic growth. 18O-labeled populations displaying anaerobic growth had a significantly non-random phylogenetic distribution, exhibited by numerous clades currently lacking cultured representatives within the Planctomycetes, Actinobacteria, Latescibacteria, Verrucomicrobia, and Acidobacteria. Genes encoding the beta-subunit of the dissimilatory sulfate reductase (dsrB) became 18O labeled only during euxinic conditions. Sequencing of these 18O-labeled dsrB genes showed that Acidobacteria were the dominant group of growing sulfate-reducing bacteria, highlighting their importance for sulfur cycling in estuarine sediments. Our findings provide the first experimental constraints on the redox conditions underlying increased growth in several groups of “microbial dark matter”, validating hypotheses put forth by earlier metagenomic studies.This work was supported by a grant OR 417/1-1 from the Deutsche Forschungsgemeinschaft, and a Junior Researcher Fund grant from LMU Munich to WDO. This work was performed in part, through the Master’s Program in Geobiology and Paleontology (MGAP) at LMU Munich
Correlation between live weight and body measurements in certain dog breeds
The purpose of this study was to determine the correlation between live weight and body measurements in Zagar, Zerdava, and Catalburun dogs. Animal materials were obtained from various regions of Turkey. A total of 304 dogs from three breeds were used: Zagar (45 females, 59 males), Zerdava (50 females, 50 males), and Catalburun (62 females, 38 males). Live weights and certain body measurements were determined. A linear regression model was created using the parameters obtained in this study. The bodyweights calculated with the body measurements were found to be at a high or acceptable level in the Zagar, Zerdava, and Catalburun genotypes (R-2 = 0.902, 0.467, and 0.697, respectively).Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)The authors would like to thank Scientific and Technological Research Council of Turkey (TUBITAK) and the owners of the Zagar, Zerdava and Catalburun dogs for their support to the project
Energy optimisation models for self-sufficiency of a typical turkish residential electricity customer of the future
This paper utilises a two-stage demand response-enabled energy management algorithm for a typical Turkish self-sufficient living space. The proposed energy management model provides an additional gain in line with the goal of self-sufficiency by scheduling flexible loads and energy storage systems at home according to a static time of use tariff. The impact of load scheduling and battery optimisation were evaluated in the scope of self-sufficiency, economic gain and return on investment performances. According to the results, the proposed two-stage structure provided a net saving increase of 9.5% in the one-battery scenario, and it rises to 14% in the design with three batteries. On the other hand, when we inspect the energy management scenarios with the return on investment (ROI) calculations, we see that the single battery system has a higher ROI than the two or three battery systems due to the increased battery cost. Moreover, the ROI value, 13.9% without optimisation, increased to 15.3% in the proposed Home Energy Management System (HEMS) model. As can be seen from this calculation, intelligent management of batteries and flexible loads provided a 10% increase in ROI value.</jats:p
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
The physics of a two-component cold fermi gas is now frequently addressed in
laboratories. Usually this is done for large samples of tens to hundreds of
thousands of particles. However, it is now possible to produce few-body systems
(1-100 particles) in very tight traps where the shell structure of the external
potential becomes important. A system of two-species fermionic cold atoms with
an attractive zero-range interaction is analogous to a simple model of nucleus
in which neutrons and protons interact only through a residual pairing
interaction. In this article, we discuss how the problem of a two-component
atomic fermi gas in a tight external trap can be mapped to the nuclear shell
model so that readily available many-body techniques in nuclear physics, such
as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the
study of these systems. We demonstrate an application of the SMMC method by
estimating the pairing correlations in a small two-component Fermi system with
moderate-to-strong short-range two-body interactions in a three-dimensional
harmonic external trapping potential.Comment: 13 pages, 3 figures. Final versio
KLEIN: A New Family of Lightweight Block Ciphers
Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact
- …