4 research outputs found

    Formation and diffusion characteristics of Pt clusters on graphene, 1H-MoS2 and 1T-TaS2

    Get PDF
    Many experiments have revealed that the surfaces of graphene and graphene-like structures can play an active role as a host surface for clusterization of transition metal atoms. Motivated by these observations, we investigate theoretically the adsorption, diffusion and magnetic properties of Pt clusters on three different two-dimensional atomic crystals using first principles density functional theory. We found that monolayers of graphene, molybdenum disulfide (1H-MoS2) and tantalum disulfide (1T-TaS2) provide different nucleation characteristics for Pt cluster formation. At low temperatures, while the bridge site is the most favorable site where the growth of a Pt cluster starts on graphene, top-Mo and top-Ta sites are preferred on 1H-MoS2 and 1T-TaS2, respectively. Ground state structures and magnetic properties of Ptn clusters (n = 2,3,4) on three different monolayer crystal structures are obtained. We found that the formation of Pt2 dimer and a triangle-shaped Pt3 cluster perpendicular to the surface are favored over the three different surfaces. While bent rhombus shaped Pt4 is formed on graphene, the formation of tetrahedral shaped clusters are more favorable on 1H-MoS2 and 1T-TaS2. Our study of the formation of Ptn clusters on three different monolayers provides a gateway for further exploration of nanocluster formations on various surfaces.Flemish Science Foundation (FWO-Vl); Methusalem foundation of the Flemish government; FWO Pegasus Long Marie Curie Fellowshi

    TiS3 nanoribbons: Width-independent band gap and strain-tunable electronic properties

    Get PDF
    The electronic properties, carrier mobility, and strain response of TiS3 nanoribbons (TiS3 NRs) are investigated by first-principles calculations. We found that the electronic properties of TiS3 NRs strongly depend on the edge type (a or b). All a-TiS3 NRs are metallic with a magnetic ground state, while b-TiS3 NRs are direct band gap semiconductors. Interestingly, the size of the band gap and the band edge position are almost independent of the ribbon width. This feature promises a constant band gap in a b-TiS3 NR with rough edges, where the ribbon width differs in different regions. The maximum carrier mobility of b-TiS3 NRs is calculated by using the deformation potential theory combined with the effective mass approximation and is found to be of the order 103cm2V-1s-1. The hole mobility of the b-TiS3 NRs is one order of magnitude lower, but it is enhanced compared to the monolayer case due to the reduction in hole effective mass. The band gap and the band edge position of b-TiS3 NRs are quite sensitive to applied strain. In addition we investigate the termination of ribbon edges by hydrogen atoms. Upon edge passivation, the metallic and magnetic features of a-TiS3 NRs remain unchanged, while the band gap of b-TiS3 NRs is increased significantly. The robust metallic and ferromagnetic nature of a-TiS3 NRs is an essential feature for spintronic device applications. The direct, width-independent, and strain-tunable band gap, as well as the high carrier mobility, of b-TiS3 NRs is of potential importance in many fields of nanoelectronics, such as field-effect devices, optoelectronic applications, and strain sensors.Flemish Science Foundation (FWO-Vl); Methusalem foundation of the Flemish government; Hercules Foundation; FWO Pegasus-Long Marie Curie Fellowship; FWO Pegasus-Short Marie Curie Fellowship; TUBITAK (114F397

    Hexagonal AlN: Dimensional-crossover-driven band-gap transition

    Get PDF
    Motivated by a recent experiment that reported the successful synthesis of hexagonal (h) AlN [Tsipas, Appl. Phys. Lett. 103, 251605 (2013)APPLAB0003-695110.1063/1.4851239], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h-AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h-AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm-1 and an Eg mode at 703 cm-1, which are observable by Raman measurements. In addition, single-layer h-AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, AA′-type stacking is found to be the most favorable one, and interlayer interaction is strong. While N-layered h-AlN is an indirect-band-gap semiconductor for N=1-9, we predict that thicker structures (N≥10) have a direct band gap at the Γ point. The number-of-layer-dependent band-gap transitions in h-AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides.Flemish Science Foundation (FWO-Vl); Methusalem foundation of the Flemish government; TUBITAK Project (114F397); FWO Pegasus Long Marie Curie Fellowshi

    Hydrogenation-driven phase transition in single-layer TiSe2

    Get PDF
    First-principles calculations based on density-functional theory are used to investigate the effects of hydrogenation on the structural, vibrational, thermal and electronic properties of the charge density wave (CDW) phase of single-layer TiSe2. It is found that hydrogenation of single-layer TiSe2 is possible through adsorption of a H atom on each Se site. Our total energy and phonon calculations reveal that a structural phase transition occurs from the CDW phase to the T d phase upon full hydrogenation. Fully hydrogenated TiSe2 presents a direct gap semiconducting behavior with a band gap of 119 meV. Full hydrogenation also leads to a significant decrease in the heat capacity of single-layer TiSe2.TUBITAK (114F397--116C073); The Science Academy, Turkey under the BAGEP progra
    corecore