121 research outputs found

    Stability of Effective Thin-shell Wormholes Under Lorentz Symmetry Breaking Supported by Dark Matter and Dark Energy

    Full text link
    In this paper, we construct generic, spherically symmetric thin-shell wormholes and check their stabilities using the unified dark sector, including dark energy and dark matter. We give a master equation, from which one can recover, as a special case, other stability solutions for generic spherically symmetric thin-shell wormholes. In this context, we consider a particular solution; namely we construct an effective thin-shell wormhole under Lorentz symmetry breaking. We explore stability analyses using different models of the modified Chaplygin gas with constraints from cosmological observations such as seventh-year full Wilkinson microwave anisotropy probe data points, type Ia supernovae, and baryon acoustic oscillation. In all these models we find stable solutions by choosing suitable values for the parameters of the Lorentz symmetry breaking effect.Comment: 13 pages, 9 figures, accepted for publication in Eur. Phys. J. Plu

    Gravitational Lensing by Rotating Wormholes

    Full text link
    In this paper the deflection angle of light by a rotating Teo wormhole spacetime is calculated in the weak limit approximation. We mainly focus on the weak deflection angle by revealing the gravitational lensing as a partially global topological effect. We apply the Gauss-Bonnet theorem (GBT) to the optical geometry osculating the Teo-Randers wormhole optical geometry to calculate the deflection angle. Furthermore we find the same result using the standard geodesic method. We have found that the deflection angle can be written as a sum of two terms, namely the first term is proportional to the throat of the wormhole and depends entirely on the geometry, while the second term is proportional to the spin angular momentum parameter of the wormhole. A direct observation using lensing can shed light and potentially test the nature of rotating wormholes by comparing with the black holes systems.Comment: Accepted for publication in Physical Review

    Stable Dyonic Thin-Shell Wormholes in Low-Energy String Theory

    Get PDF
    Considerable attention has been devoted to the wormhole physics in the past 30 years by exploring the possibilities of finding traversable wormholes without the need of exotic matter. In particular the thin-shell wormhole formalism has been widely investigated by exploiting the cut-and-paste technique to merge two space-time regions and, to research the stability of these wormholes developed by Visser. This method helps us to minimize the amount of the exotic matter. In this paper we construct a four dimensional, spherically symmetric, dyonic thin-shell wormhole with electric charge QQ, magnetic charge PP, and dilaton charge Σ\Sigma, in the context of Einstein-Maxwell-dilaton theory. We have applied Darmois-Israel formalism and the cut-and-paste method by joining together two identical spacetime solutions. We carry out the dyonic thin-shell wormhole stability analyses by using a linear barotropic gas, Chaplygin gas, and logarithmic gas for the exotic matter. It is shown that by choosing suitable parameter values as well as equation of state parameter, under specific conditions we obtain a stable dyonic thin-shell wormhole solution. Finally we argue that, the stability domain of the dyonic thin-shell wormhole can be increased in terms of electric charge, magnetic charge, and dilaton charge.Comment: 10 pages, 3 figures, will appear in Advances in High Energy Physic
    • …
    corecore