2 research outputs found

    Development of 3D holographic endoscope

    No full text
    Here we present the development of a 3D holographic endoscope with an interferometer built around a commercial rigid endoscope. We consider recording the holograms with coherent and incoherent light separately without compromising the white light imaging capacity of the endoscope. In coherent light based recording, reference wave required for the hologram is obtained in two different ways. First, as in the classical holography, splitting the laser beam before the object illumination, and secondly creating the reference beam from the object beam itself. This second method does not require path-length matching between the object wave and the reference wave, and it allows the usage of short coherence length light sources. For incoherent light based holographic recordings various interferometric configurations are considered. Experimental results on both illumination conditions are presented

    Three-dimensional image reconstruction of macroscopic objects from a single digital hologram using stereo disparity

    No full text
    We present depth extraction of macroscopic three-dimensional (3D) objects from a single digital hologram using stereo disparity. The method does not require the phase information of the hologram but two perspectives of the scene, which are easily obtained by dividing the hologram into two parts (two apertures) before the reconstruction. Variation of the hologram division is countless since each piece of a single hologram contains all the information regarding the scene; therefore, stereo disparity can be calculated along any arbitrary direction. We investigated the effects of gradual and sharp divisions of the holograms for the disparity map calculations, specifically for divisions in the vertical, horizontal, and diagonal directions. After obtaining the depth map from the stereo images, a regular two-dimensional image of the object is merged with the depth information to form 3D visualization of the object. Holograms were recorded with a rigid endoscope, and experimentally obtained depth profiles of the objects are in very good agreement with the actual profiles
    corecore