139 research outputs found

    Quantum Fuel with Multilevel Atomic Coherence for Ultrahigh Specific Work in a Photonic Carnot Engine

    Full text link
    We investigate scaling of work and efficiency of a photonic Carnot engine with the number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science {\bf 299}, 862 (2003)], to the case of N+1N+1 level atoms with NN coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse grained master equation to evaluate the work and efficiency, analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.Comment: 15 pages, 8 figure

    Bistable behavior of a two-mode Bose-Einstein condensate in an optical cavity

    Get PDF
    We consider a two-component Bose-Einstein condensate in a one-dimensional optical cavity. Specifically, the condensate atoms are taken to be in two degenerate modes due to their internal hyperfine spin degrees of freedom and they are coupled to the cavity field and an external transverse laser field in a Raman scheme. A parallel laser is also exciting the cavity mode. When the pump laser is far detuned from its resonance atomic transition frequency, an effective nonlinear optical model of the cavity-condensate system is developed under Discrete Mode Approximation (DMA), while matter-field coupling has been considered beyond the Rotating Wave Approximation. By analytical and numerical solutions of the nonlinear dynamical equations, we examine the mean cavity field and population difference (magnetization) of the condensate modes. The stationary solutions of both the mean cavity field and normalized magnetization demonstrate bistable behavior under certain conditions for the laser pump intensity and matter-field coupling strength.Comment: Proceeding of Laser Physics 201
    corecore