202 research outputs found

    Uniform random sampling of planar graphs in linear time

    Get PDF
    This article introduces new algorithms for the uniform random generation of labelled planar graphs. Its principles rely on Boltzmann samplers, as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a suitable use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic description of the generating functions counting planar graphs, which was recently obtained by Gim\'enez and Noy. This gives rise to an extremely efficient algorithm for the random generation of planar graphs. There is a preprocessing step of some fixed small cost. Then, the expected time complexity of generation is quadratic for exact-size uniform sampling and linear for approximate-size sampling. This greatly improves on the best previously known time complexity for exact-size uniform sampling of planar graphs with nn vertices, which was a little over O(n7)O(n^7).Comment: 55 page

    Transversal structures on triangulations: a combinatorial study and straight-line drawings

    Get PDF
    This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, which are called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edge-labelling and consists of two bipolar orientations that are transversal. For this reason, the terminology used here is that of transversal structures. The main results obtained in the article are a bijection between irreducible triangulations and ternary trees, and a straight-line drawing algorithm for irreducible triangulations. For a random irreducible triangulation with nn vertices, the grid size of the drawing is asymptotically with high probability 11n/27×11n/2711n/27\times 11n/27 up to an additive error of \cO(\sqrt{n}). In contrast, the best previously known algorithm for these triangulations only guarantees a grid size (⌈n/2⌉−1)×⌊n/2⌋(\lceil n/2\rceil -1)\times \lfloor n/2\rfloor.Comment: 42 pages, the second version is shorter, focusing on the bijection (with application to counting) and on the graph drawing algorithm. The title has been slightly change

    Unified bijections for planar hypermaps with general cycle-length constraints

    Full text link
    We present a general bijective approach to planar hypermaps with two main results. First we obtain unified bijections for all classes of maps or hypermaps defined by face-degree constraints and girth constraints. To any such class we associate bijectively a class of plane trees characterized by local constraints. This unifies and greatly generalizes several bijections for maps and hypermaps. Second, we present yet another level of generalization of the bijective approach by considering classes of maps with non-uniform girth constraints. More precisely, we consider "well-charged maps", which are maps with an assignment of "charges" (real numbers) on vertices and faces, with the constraints that the length of any cycle of the map is at least equal to the sum of the charges of the vertices and faces enclosed by the cycle. We obtain a bijection between charged hypermaps and a class of plane trees characterized by local constraints

    Unified bijections for maps with prescribed degrees and girth

    Full text link
    This article presents unified bijective constructions for planar maps, with control on the face degrees and on the girth. Recall that the girth is the length of the smallest cycle, so that maps of girth at least d=1,2,3d=1,2,3 are respectively the general, loopless, and simple maps. For each positive integer dd, we obtain a bijection for the class of plane maps (maps with one distinguished root-face) of girth dd having a root-face of degree dd. We then obtain more general bijective constructions for annular maps (maps with two distinguished root-faces) of girth at least dd. Our bijections associate to each map a decorated plane tree, and non-root faces of degree kk of the map correspond to vertices of degree kk of the tree. As special cases we recover several known bijections for bipartite maps, loopless triangulations, simple triangulations, simple quadrangulations, etc. Our work unifies and greatly extends these bijective constructions. In terms of counting, we obtain for each integer dd an expression for the generating function Fd(xd,xd+1,xd+2,...)F_d(x_d,x_{d+1},x_{d+2},...) of plane maps of girth dd with root-face of degree dd, where the variable xkx_k counts the non-root faces of degree kk. The expression for F1F_1 was already obtained bijectively by Bouttier, Di Francesco and Guitter, but for d≥2d\geq 2 the expression of FdF_d is new. We also obtain an expression for the generating function \G_{p,q}^{(d,e)}(x_d,x_{d+1},...) of annular maps with root-faces of degrees pp and qq, such that cycles separating the two root-faces have length at least ee while other cycles have length at least dd. Our strategy is to obtain all the bijections as specializations of a single "master bijection" introduced by the authors in a previous article. In order to use this approach, we exhibit certain "canonical orientations" characterizing maps with prescribed girth constraints

    A simple formula for the series of constellations and quasi-constellations with boundaries

    Full text link
    We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. The formula naturally extends to pp-constellations and quasi-pp-constellations with boundaries (the case p=2p=2 corresponding to bipartite maps).Comment: 23 pages, full paper version of v1, with results extended to constellations and quasi constellation
    • …
    corecore