6 research outputs found

    Yapay sinir ağlarının uyarlanabilir donanımsal yapılarda gerçeklenmesi

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Yapay Sinir Ağları (YSA'lar), biyolojik sinir sistemine dayalı elektronik modellerdir. YSA'lar girişlerden gelen verileri işleyen birbirine bağlı yapay nöronlardan oluşmaktadır. Bu mimariler, yazılım ya da donanım olarak gerçekleştirilebilirler. YSA'nın yazılım uygulamasının avantajı, tasarımcının YSA bileşenlerinin iç işleyişini bilmesine gerek olmamasıdır. Bununla birlikte, gerçek zamanlı uygulamalarda, yazılım tabanlı YSA'lar donanım tabanlı YSA'lardan daha yavaştır. YSA hesaplamaları paralel olarak gerçekleştirilmektedir ve paralel işlem için özel donanım aygıtları gereklidir. Birçok alandan araştırmacılar optimizasyon, sınıflandırma, kontrol, görüntü işleme vb. problemlerin çözümü için YSA donanım uygulamaları gerçekleştirmişlerdir. Bu uygulamalar, YSA'ların paralel doğasından yararlanmak için farklı türde cihazlar üzerinde gerçekleştirilmiştir. YSA'nın FPGA uygulamaları, yeniden yapılandırılabilir yapısı ve paralel mimarisi nedeniyle son yirmi yılda büyük ilgi uyandırmıştır. Bu tez çalışmasında, Quartus II şematik tasarım kullanılarak eğitilebilir çok katmanlı sinir ağı (MLNN) yapısının donanım uygulaması FPGA üzerinde tamamen kombinasyonel mantık olarak gerçekleştirilmiştir. Yapay sinir ağını eğitmek için eğim düşüm metodunu kullanan geri yayılım algoritması uygulanmıştır. Nümerik tanımlama için IEEE tek-hassasiyetli kayan-noktalı format kullanılmıştır. Bu çalışma aynı zamanda IEEE tek-hassasiyetli kayan-noktalı format ile tam uyumlu hızlı bir kayan noktalı toplayıcı, bir paralel çarpıcı ve bir sigmoid aktivasyon fonksiyonu bloğunu sunmaktadır. İşlemleri paralel olarak gerçekleştiren toplayıcı, paralel çarpıcı ve aktivasyon fonksiyonu bloğu tamamen kombinasyonel mantık olarak tasarlanmıştır. Bu yeni tasarımda, gecikmeyi azaltmak için kaydırma işlemlerinde kaydırmalı yazmaçlar yerine üç-durumlu tampon serileri kullanılmıştır. Üç-durumlu tampon serileri kullanıldığından kaydırma işlemi için saat darbesi gerekli değildir ve böylece sonuç tek bir çevrimde üretilir. Sadece kapı gecikmesi maliyetli önerilen tasarım, YSA'nın donanım uygulamaları için uygundur.Artificial Neural Networks (ANNs) are electronic models based on biological nervous system. ANNs are made up of interconnected artificial neurons which can process values from inputs. These architectures can be implemented either in software or in hardware. The advantage of the software implementation of ANN is that the designer does not need to know the inner workings of ANN components. However, in real time applications, software based ANNs are slower than hardware based ANNs. ANN computations are carried out in parallel and special hardware devices are required for parallel processing. Researchers from many disciplines have been performing ANN hardware implementations to solve a variety of problems in optimization, classification, control, image processing etc. These applications have been performed on different types of devices to take advantage of the parallel nature inherent to ANNs. FPGA implementations of ANN have aroused great interest during the last two decades due to its reconfigurable structure and parallel architecture. In this thesis, hardware implementation of trainable Multi Layer Neural Network (MLNN) structure on FPGA (Field Programmable Gate Array) is realized as entirely combinational logic by using Quartus II schematic design. The back propagation algortihm, which uses gradient descent metod is implemented in order to train the neural network. IEEE single-precision floating-point format is used for numerical description. This study also presents the hardware designs of a fast floating point adder, a parallel multiplier and a sigmoid activation function block that are fully compliant with the IEEE single-precision floating-point format. The adder, parallel multiplier and the activation function block are designed as entirely combinational logic that perform operations in parallel. In this novel design, tri state buffer series are used for shifting operations instead of shift registers for reducing latency. Because the use of tri-state buffer series, clock pulse is not required for shifting and thus the result is generated in only a single clock-cycle. The proposed design is suitable for hardware implementation of ANN at the cost of gate delays only

    Yapay sinir ağlarının uyarlanabilir donanımsal yapılarda gerçeklenmesi

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Yapay Sinir Ağları (YSA'lar), biyolojik sinir sistemine dayalı elektronik modellerdir. YSA'lar girişlerden gelen verileri işleyen birbirine bağlı yapay nöronlardan oluşmaktadır. Bu mimariler, yazılım ya da donanım olarak gerçekleştirilebilirler. YSA'nın yazılım uygulamasının avantajı, tasarımcının YSA bileşenlerinin iç işleyişini bilmesine gerek olmamasıdır. Bununla birlikte, gerçek zamanlı uygulamalarda, yazılım tabanlı YSA'lar donanım tabanlı YSA'lardan daha yavaştır. YSA hesaplamaları paralel olarak gerçekleştirilmektedir ve paralel işlem için özel donanım aygıtları gereklidir. Birçok alandan araştırmacılar optimizasyon, sınıflandırma, kontrol, görüntü işleme vb. problemlerin çözümü için YSA donanım uygulamaları gerçekleştirmişlerdir. Bu uygulamalar, YSA'ların paralel doğasından yararlanmak için farklı türde cihazlar üzerinde gerçekleştirilmiştir. YSA'nın FPGA uygulamaları, yeniden yapılandırılabilir yapısı ve paralel mimarisi nedeniyle son yirmi yılda büyük ilgi uyandırmıştır. Bu tez çalışmasında, Quartus II şematik tasarım kullanılarak eğitilebilir çok katmanlı sinir ağı (MLNN) yapısının donanım uygulaması FPGA üzerinde tamamen kombinasyonel mantık olarak gerçekleştirilmiştir. Yapay sinir ağını eğitmek için eğim düşüm metodunu kullanan geri yayılım algoritması uygulanmıştır. Nümerik tanımlama için IEEE tek-hassasiyetli kayan-noktalı format kullanılmıştır. Bu çalışma aynı zamanda IEEE tek-hassasiyetli kayan-noktalı format ile tam uyumlu hızlı bir kayan noktalı toplayıcı, bir paralel çarpıcı ve bir sigmoid aktivasyon fonksiyonu bloğunu sunmaktadır. İşlemleri paralel olarak gerçekleştiren toplayıcı, paralel çarpıcı ve aktivasyon fonksiyonu bloğu tamamen kombinasyonel mantık olarak tasarlanmıştır. Bu yeni tasarımda, gecikmeyi azaltmak için kaydırma işlemlerinde kaydırmalı yazmaçlar yerine üç-durumlu tampon serileri kullanılmıştır. Üç-durumlu tampon serileri kullanıldığından kaydırma işlemi için saat darbesi gerekli değildir ve böylece sonuç tek bir çevrimde üretilir. Sadece kapı gecikmesi maliyetli önerilen tasarım, YSA'nın donanım uygulamaları için uygundur.Artificial Neural Networks (ANNs) are electronic models based on biological nervous system. ANNs are made up of interconnected artificial neurons which can process values from inputs. These architectures can be implemented either in software or in hardware. The advantage of the software implementation of ANN is that the designer does not need to know the inner workings of ANN components. However, in real time applications, software based ANNs are slower than hardware based ANNs. ANN computations are carried out in parallel and special hardware devices are required for parallel processing. Researchers from many disciplines have been performing ANN hardware implementations to solve a variety of problems in optimization, classification, control, image processing etc. These applications have been performed on different types of devices to take advantage of the parallel nature inherent to ANNs. FPGA implementations of ANN have aroused great interest during the last two decades due to its reconfigurable structure and parallel architecture. In this thesis, hardware implementation of trainable Multi Layer Neural Network (MLNN) structure on FPGA (Field Programmable Gate Array) is realized as entirely combinational logic by using Quartus II schematic design. The back propagation algortihm, which uses gradient descent metod is implemented in order to train the neural network. IEEE single-precision floating-point format is used for numerical description. This study also presents the hardware designs of a fast floating point adder, a parallel multiplier and a sigmoid activation function block that are fully compliant with the IEEE single-precision floating-point format. The adder, parallel multiplier and the activation function block are designed as entirely combinational logic that perform operations in parallel. In this novel design, tri state buffer series are used for shifting operations instead of shift registers for reducing latency. Because the use of tri-state buffer series, clock pulse is not required for shifting and thus the result is generated in only a single clock-cycle. The proposed design is suitable for hardware implementation of ANN at the cost of gate delays only

    Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması

    Get PDF
    Objective: The aim of this study is to classify the magnetoencephalography (MEG) signals with artificial neural network to solve brain activity. Methods: The Generalized Regression Neural Network (GRNN) was used to classify MEG signals. The features of the signals were extracted by the Riemannian approach and the accuracy of the GRNN was calculated by the 10-fold cross validation technique. Results: In the study, MEG data recorded from 306 channels belonging to 7 male subjects and 9 female subjects were used. Approximately 588 stimuli were shown to each individual, so the entire data set is composed of 9414 stimuli. Mean specificity, mean sensitivity and mean classification accuracy were obtained 75.43%, 82.57% and 79%, respectively. The classification accuracies obtained by this study and other studies for same MEG dataset were presented comparatively. Conclusion: GRNN is thought to be a successful alternative to existing methods for classifying MEG signals

    Öğrenmeli Vektör Kuantalama ile Beyin Bilgisayar Arayüzü Üzerine Bir Çalışma

    No full text
    Beyin-bilgisayar arayüzü (BCI) insan beyni ve bilgisayar arasında iletişim ve kontrol sağlayabilir. Beyin sinyallerinin saptanması, bu sistemler için en temel düzeydir. Manyetoensefalografi (MEG) beyin aktivitesini çözmek için invazif olmayan bir görüntüleme tekniğidir. MEG sinyalleri karmaşıktır ve çevresel olaylardan ve beynin fonksiyonel farklılıklarından kolayca etkilenebilir. BCI sistemleri için bu karmaşık sinyallerden bilgi almak zordur. Bu nedenle, bilgiyi anlamlı kılmak için ileri sinyal işleme teknikleri gereklidir. Bu çalışmada, manyetoensefalografi sinyallerini öğrenmeli vektör kuantalama (LVQ) ile sınıflandırarak LVQ algoritmasının başarısı ortaya konulmuştur. Sınıflandırma doğruluğu 10 kat çapraz doğrulama ile elde edilmiştir. Önerilen sınıflandırıcının performansı, MEG'e odaklanan ve aynı veri setini kullanan önceki yöntemler ile karşılaştırılmıştır

    Estimation of Permanent Magnet Synchronous Generator Performance with Artificial Neural Network Models

    No full text
    The interest in renewable energy sources has grown with the increase of environmental pollution and the decrease of fossil fuels. It is possible to provide energy supply security and diversity by using renewable energy sources. In this regard, wind energy, which is one of the renewable energy sources whose share in energy production increases day by day, emerges as a local and environmentally friendly solution. Many different types of generators are used in wind turbines and these have advantages and disadvantages according to each other. Permanent magnet synchronous generators (PMSG) are preferred because of their advantages such as high efficiency, high power density and being used directly in wind turbines without the need for gear system. In this study, the performance of the 2,5 kW PMSG, with a 14-pole surface placement, internal rotor, suitable for use in wind turbines, has been examined by changing the physical structure of the magnet. For this purpose, performance parameters such as total magnet consumption, efficiency, power loss have been successfully estimated using single and double hidden layered multi layer neural network (MLNN), elman neural network (ENN) and radial basis function neural network (RBFNN)

    Prediction of the Force on a Projectile in an Electromagnetic Launcher Coil with Multilayer Neural Network

    No full text
    Elektromanyetik fırlatıcılarda merminin üzerindeki kuvvet, uyartım değeri ve merminin sargı içerisindeki konumuna göre değişiklik göstermektedir. Bu çalışmada elektromanyetik fırlatıcılarda kullanılan bobin ve merminin 3 boyutlu modeli oluşturularak sonlu elemanlar metodu ile analizler gerçekleştirilmiştir. Parametrik çözüm metodu kullanılarak, sargının uyartım değeri ve mermi konumu değiştirilerek mermi üzerindeki kuvvet karakteristiği elde edilmiştir. Sonlu elemanlar analizlerinde daha küçük çözüm adımları tanımlanarak daha hassas analizler gerçekleştirilebilir. Bununla birlikte, değişkenlerin sayısındaki artış nedeniyle analiz süresi uzamaktadır. Analiz süresi dikkate alınarak, çalışmada kuvvet kestirimi tek gizli katmandan ve iki gizli katmandan oluşan çok katmanlı sinir ağı modelleri kullanılarak gerçekleştirilmiştir. Çok katmanlı sinir ağları ile yapılan kuvvet kestirimi çalışmalarında başarılı sonuçlar elde edilmiştir
    corecore