2 research outputs found

    Left atrial mechanical function and stiffness in patients with atrial septal aneurysm: A speckle tracking study

    Get PDF
    Background: Atrial septal aneurysm (ASA) is a risk factor for arterial embolism. Atrial dysfunction and atrial arrhythmia, such as atrial fibrillation, might represent a mechanism for arterial embolism in such patients. Speckle tracking echocardiography (STE) is a novel and promising tool for detecting early changes in left atrial (LA) myocardial dysfunction. The aim of the study was to evaluate LA mechanical function and stiffness in ASA patients by 2-dimensional STE strain parameters. Methods: Thirty-four ASA patients (44.2 ± 12.3 years, 15 male) were studied, using a STE, and were compared with 31 age, gender, and left ventricular (LV) mass-matched controls (41.8 ± ± 11.5 years, 14 male). LA volume indices, mitral annular velocities, and global longitudinal LA strain were measured. The ratio of E/e’ to LA strain was used as an index of LA stiffness. Results: Patients with ASA showed increased LA volume indices and decreased LA global strain (25.3 ± 5.2 vs. 42.1 ± 8.7, p < 0.001). LA stiffness was increased in patients with ASA compared to the control subjects (0.41 ± 0.15 vs. 0.14 ± 0.05, p < 0.001), and LA strain and stiffness were related with LA volume indices. Conclusions: Patients with ASA have decreased LA global strain and increased stiffness, in comparison with those of the control subjects. LA strain and stiffness were significantly related with LA volume indices. LA stiffness and strain can be used for the assessment of LA function in patients with ASA

    Effects of Sodium-Glucose Co-Transporter-2 Inhibition on Pulmonary Arterial Stiffness and Right Ventricular Function in Heart Failure with Reduced Ejection Fraction

    No full text
    Background and Objectives: In addition to left ventricular (LV) functions, right ventricular (RV) functions and pulmonary arterial stiffness (PAS) may be adversely affected in patients with heart failure with reduced ejection fraction (HFrEF). Sodium-glucose co-transporter-2 (SGLT2) inhibitor therapy positively affects LV functions as well as having functional and symptomatic benefits in HFrEF patients. In this study, we aimed to evaluate the effects of SGLT2 inhibitor treatment on RV function and PAS in HFrEF patients. Materials andMethods: 168 HFrEF patients with New York Heart Association (NYHA) class ≥2 symptoms despite optimal medical treatment and who were started on SGLT2 inhibitor therapy were included in this retrospective study. NYHA classification, N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, Minnesota Living with Heart Failure Questionnaire (MLWHFQ) scores, laboratory tests, and transthoracic echocardiography (TTE) measurements were recorded before treatment and at the end of the 6-month follow-up. Results: The mean age of the patients was 62.7 ± 11.4 years, and 38 (22.6%) were women. RV function (RV fractional area change (FAC) (33.8 ± 6.4% vs. 39.2 ± 7.3%, p < 0.001); tricuspid annular plane systolic excursion (TAPSE) (18.4 ± 3.8 mm vs. 19.6 ± 3.6 mm, p < 0.001); RV S’ (10 (8 − 13) cm/s vs. 13 (10 − 16) cm/s, p < 0.001); RV myocardial performance index (RV MPI) (0.68 ± 0.12 vs. 0.59 ± 0.11, p < 0.001); mean pulmonary artery pressure (mPAP) (39.6 ± 7.8 mmHg vs. 32 ± 6.8 mmHg, p = 0.003)) and PAS (24.2 ± 4.6 kHz/ms vs. 18.6 ± 3.1 kHz/ms, p < 0.001) values at the 6-month follow-up after SGLT2 inhibitor therapy significantly improved. It was found that SGLT2 inhibitor treatment provided significant improvement in NYHA classification, MLWHFQ scores, and NT-proBNP levels (2876 ± 401 vs. 1034 ± 361, p < 0.001), and these functional and symptomatic positive changes in HFrEF patients were significantly correlated with positive changes in LVEF, PAS, and RV functional status. Conclusions: SGLT2 inhibitor treatment results in symptomatic and functional well-being in HFrEF patients, as well as positive changes in RV function and PAS
    corecore