36 research outputs found
State diagrams of the heart – a new approach to describing cardiac mechanics
<p>Abstract</p> <p>Background</p> <p>Cardiac time intervals have been described as a measure of cardiac performance, where prolongation, shortening and delay of the different time intervals have been evaluated as markers of cardiac dysfunction. A relatively recently developed method with improved ability to measure cardiac events is Tissue Doppler Imaging (TDI), allowing accurate measurement of myocardial movements.</p> <p>Methods</p> <p>We propose the state diagram of the heart as a new visualization tool for cardiac time intervals, presenting comparative, normalized data of systolic and diastolic performance, providing a more complete overview of cardiac function. This study aimed to test the feasibility of the state diagram method by presenting examples demonstrating its potential use in the clinical setting and by performing a clinical study, which included a comparison of the state diagram method with established echocardiography methods (E/E' ratio, LVEF and WMSI). The population in the clinical study consisted of seven patients with non ST-elevation myocardial infarction (NSTEMI) and seven control subjects, individually matched according to age and gender. The state diagram of the heart was generated from TDI curves from seven positions in the myocardium, visualizing the inter- and intraventricular function of the heart by displaying the cardiac phases.</p> <p>Results</p> <p>The clinical examples demonstrated that the state diagram allows for an intuitive visualization of pathological patterns as ischemia and dyssynchrony. Further, significant differences in percentage duration between the control group and the NSTEMI group were found in eight of the totally twenty phases (10 phases for each ventricle), e.g. in the transition phases (Pre-Ejection and Post-Ejection). These phases were significantly longer (> 2.18%) for the NSTEMI group than for the control group (p < 0.05). No significant differences between the groups were found for the established echocardiography methods.</p> <p>Conclusion</p> <p>The test results clearly indicate that the state diagram has potential to be an efficient tool for visualization of cardiac dysfunction and for detection of NSTEMI.</p
HTR1A a Novel Type 1 Diabetes Susceptibility Gene on Chromosome 5p13-q13
Background: We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD less than= 2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. Methodology/Principal Findings: Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, pless than9.8x10(-6)). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (pless than0.002, pless than0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. Conclusions: We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both
Functional and genetic analysis in type 2 diabetes of Liver X receptor alleles – a cohort study
<p>Abstract</p> <p>Background</p> <p>Liver X receptor alpha <it>(LXRA</it>) and beta (<it>LXRB</it>) regulate glucose and lipid homeostasis in model systems but their importance in human physiology is poorly understood. This project aimed to determine whether common genetic variations in <it>LXRA </it>and <it>LXRB </it>associate with type 2 diabetes (T2D) and quantitative measures of glucose homeostasis, and, if so, reveal the underlying mechanisms.</p> <p>Methods</p> <p>Eight common single nucleotide polymorphisms in <it>LXRA </it>and <it>LXRB </it>were analyzed for association with T2D in one French cohort (N = 988 cases and 941 controls), and for association with quantitative measures reflecting glucose homeostasis in two non-diabetic population-based samples comprising N = 697 and N = 1344 adults. Investigated quantitative phenotypes included fasting plasma glucose, serum insulin, and HOMA<sub>IR </sub>as measure of overall insulin resistance. An oral glucose tolerance test was performed in N = 1344 of adults. The two alleles of the proximal <it>LXRB </it>promoter, differing only at the SNP rs17373080, were cloned into reporter vectors and transiently transfected, whereupon allele-specific luciferase activity was measured. rs17373080 overlapped, according to <it>in silico </it>analysis, with a binding site for Nuclear factor 1 (NF1). Promoter alleles were tested for interaction with NF1 using direct DNA binding and transactivation assays.</p> <p>Results</p> <p>Genotypes at two <it>LXRB </it>promoter SNPs, rs35463555 and rs17373080, associated nominally with T2D (P values 0.047 and 0.026). No <it>LXRA </it>or <it>LXRB </it>SNP associated with quantitative measures reflecting glucose homeostasis. The rs17373080 C allele displayed higher basal transcription activity (P value < 0.05). The DNA-mobility shift assay indicated that oligonucleotides corresponding to either rs17373080 allele bound NF1 transcription factors in whole cell extracts to the same extent. Different NF1 family members showed different capacity to transactivate the <it>LXRB </it>gene promoter, but there was no difference between promoter alleles in NF1 induced transactivation activity.</p> <p>Conclusion</p> <p>Variations in the <it>LXRB </it>gene promoter may be part of the aetiology of T2D. However, the association between <it>LXRB </it>rs35463555 and rs17373080, and T2D are preliminary and needs to be investigated in additional larger cohorts. Common genetic variation in <it>LXRA </it>is unlikely to affect the risk of developing T2D or quantitative phenotypes related to glucose homeostasis.</p
Migration and wear of a hydroxyapatite-coated hip prosthesis. A controlled roentgen stereophotogrammetric study
A consecutive series of 30 total hip replacements using a hydroxyapatite (HA)-coated, modular implant (Omnifit) was followed clinically and by roentgen stereophotogrammetric analysis for two years and compared with two control groups, one of 27 cemented Charnley sockets and one of 40 cemented Charnley stems. Omnifit sockets with a central gap between the dome of the socket and the acetabular bone in the postoperative radiographs, migrated less than sockets without such gaps (p = 0.01). After adjustment for patient-related factors (age, gender and weight), no significant difference was found between the two prostheses with respect to micromotion and wear. We conclude that the early fixation of the HA-coated Omnifit prosthesis compares with that of the cemented Charnley prosthesis
Hydroxyapatite augmentation of the porous coating improves fixation of tibial components. A randomised RSA study in 116 patients
In a single-blind, randomised series of knee replacements in 116 patients, we used radiostereometric analysis (RSA) to measure micromotion in three types of tibial implant fixation for two years after knee replacement. We compared hydroxyapatite-augmented porous coating, porous coating, and cemented fixation of the same design of tibial component. At one to two years, porous-coated implants migrated at a statistically significantly higher rate than hydroxyapatite-augmented or cemented implants. There was no significant difference between hydroxyapatite-coated and cemented implants. We conclude that hydroxyapatite augmentation may offer a clinically relevant advantage over a simple porous coating for tibial component fixation, but is no better than cemented fixation
Mapping of a YscY Binding Domain within the LcrH Chaperone That Is Required for Regulation of Yersinia Type III Secretion
Type III secretion systems are used by many animal and plant interacting bacteria to colonize their host. These systems are often composed of at least 40 genes, making their temporal and spatial regulation very complex. Some type III chaperones of the translocator class are important regulatory molecules, such as the LcrH chaperone of Yersinia pseudotuberculosis. In contrast, the highly homologous PcrH chaperone has no regulatory effect in native Pseudomonas aeruginosa or when produced in Yersinia. In this study, we used LcrH-PcrH chaperone hybrids to identify a discrete region in the N terminus of LcrH that is necessary for YscY binding and regulatory control of the Yersinia type III secretion machinery. PcrH was unable to bind YscY and the homologue Pcr4 of P. aeruginosa. YscY and Pcr4 were both essential for type III secretion and reciprocally bound to both substrates YscX of Yersinia and Pcr3 of P. aeruginosa. Still, Pcr4 was unable to complement a ΔyscY null mutant defective for type III secretion and yop-regulatory control in Yersinia, despite the ability of YscY to function in P. aeruginosa. Taken together, we conclude that the cross-talk between the LcrH and YscY components represents a strategic regulatory pathway specific to Yersinia type III secretion
The type 1 diabetes protective HLA DQB1*0602 allele is less frequent in gestational diabetes mellitus.
AIMS/HYPOTHESIS: We tested whether gestational diabetes mellitus (GDM) is associated with HLA-DQ genotypes. METHODS: A total of 764 mothers with non-autoimmune (GAD65, insulinoma-associated protein 2 [IA-2] and insulin autoantibody-negative) GDM were ascertained between September 2000 and August 2004 in the population-based Diabetes Prediction in Skåne (DiPiS) study. HLA-DQB1 genotypes were determined in these mothers and in 1191 randomly selected non-diabetic control mothers also negative for islet autoantibodies. The data were analysed in relation to maternal age, country of birth, number of pregnancies/siblings and pregnancy weight gain. RESULTS: The frequency of type 1 diabetes high-risk HLA-DQ alleles (DQB1*0201, DQB1*0302) did not differ between GDM mothers and controls. In contrast, the low-risk DQB1*0602 allele was less prevalent (OR 0.64, 95% CI = 0.51-0.80, p = 0.0006) in GDM than in control mothers. The difference in DQB1*0602 frequency between GDM mothers and controls remained after multiple logistic regression analysis correcting for maternal age, country of birth, number of pregnancies/siblings and weight gain during pregnancy (OR 0.67, 95% CI 0.51-0.88, p = 0.009). CONCLUSIONS/INTERPRETATION: The negative association between mothers who have non-autoimmune GDM and HLA-DQ*0602 suggest that this allele may protect not only from type 1 diabetes but also from GDM