14 research outputs found

    Light adaptation of Photosystem II is mediated by the plastoquinone pool.

    No full text
    During the first few enzymatic turnovers after dark adaptation of photosystem II (PSII), the relaxation rate of the EPR signals from the Mn cluster and YD(dot) are significantly enhanced. This light-adaptation process has been suggested to involve the appearance of a new paramagnet on the PSII donor side [Peterson, Åhrling, Hogblom, and Styring, Biochemistry 2003, asap]. In the present study, a correlation is established between the observed relaxation enhancement and the redox state of the quinone pool. It is shown that the addition of quinol to dark-adapted PSII membrane fragments induces relaxation enhancement already after a single oxidation of the Mn, comparable to that observed after five oxidations in samples with quinones (PPBQ or DQ) added. The saturation behavior of YD(dot) revealed that with quinol added in the dark, a single flash was necessary for the relaxation enhancement to occur. The quinol-induced relaxation enhancement of PSII was also activated by illumination at 200 K. Whole thylakoids, with no artificial electron acceptor present but with an intact plastoquinone pool, displayed the same relaxation enhancement on the fifth flash as membrane fragments with exogenous quinones present. We conclude that (i) reduction of the quinone pool induces the relaxation enhancement of the PSII donor-side paramagnets, (ii) light is required for the quinol to effect the relaxation enhancement, and (iii) light-adaptation occurs in the intact thylakoid system, when the endogenous plastoquinone pool is gradually reduced by PSII turnover. It seems clear that a species on the PSII donor side is reduced by the quinol, to become a potent paramagnetic relaxer. On the basis of XANES reports, we suggest that this species may be the Mn ions not involved in the cyclic redox changes of the oxygen-evolving complex

    Light-Adaptation of Photosystem II Is Mediated by the Plastoquinone Pool †

    No full text

    The EPR Signals from the S0 and S2 States of the Mn Cluster in Photosystem II Relax Differently

    No full text
    The oxygen evolving complex (OEC) of photosystem II (PSII) gives rise to manganese-derived electron paramagnetic resonance (EPR) signals in the S0 and S2 oxidation states. These signals exhibit different microwave power saturation behavior between 4 and 10 K. Below 8 K, the S0 state EPR signal is a faster relaxer than the S2 multiline signal, but above 8 K, the S0 signal is the slower relaxer of the two. The different temperature dependencies of the relaxation of the S0 and S2 ground-state Mn signals are due to differences in the spin-lattice relaxation process. The dominating spin-lattice relaxation mechanism is concluded to be a Raman mechanism in the S0 state, with a T4.1 temperature dependence of the relaxation rate. It is proposed that the relaxation of the S2 state arises from a Raman mechanism as well, with a T6.8 temperature dependence of the relaxation rate, although the data also fit an Orbach process. If both signals relax through a Raman mechanism, the different exponents are proposed to reflect structural differences in the proteins surrounding the Mn cluster between the S0 and S2 states. The saturation of SIIslow from the YDox radical on the D2 protein was also studied, and found to vary between the S0 and the S2 states of the enzyme in a manner similar to the EPR signals from the OEC. Furthermore, we found that the S2 multiline signal in the second turnover of the enzyme is significantly more difficult to saturate than in the first turnover. This suggests differences in the OEC between the first and second cycles of the enzyme. The increased relaxation rate may be caused by the appearance of a relaxation enhancer, or it may be due to subtle structural changes as the OEC is brought into an active state

    An oscillating manganese electron paramagnetic resonance signal from the S0 state of the oxygen evolving complex in Photosystem II

    No full text
    Photosynthesis produces the oxygen necessary for all aerobic life. During this process, the manganese-containing oxygen evolving complex (OEC) in photosystem II (PSII), cycles through five oxidation states, S0-S4. One of these, S2, is known to be paramagnetic and gives rise to electron paramagnetic resonance (EPR) signals used to probe the catalytic structure and function of the OEC. The S0 state has long been thought to be paramagnetic. We report here a Mn EPR signal from the previously EPR invisible S0 state. The new signal oscillates with a period of four, indicating that it originates from fully active PSII centers. Although similar to the S2 state multiline signal, the new signal is wider (2200 gauss compared with 1850 gauss in samples produced by flashing), with different peak intensity and separation (82 gauss compared with 89 gauss). These characteristics are consistent with the S0 state EPR signal arising from a coupled MnII-MnIII intermediate. The new signal is more stable than the S2 state signal and its decay in tens of minutes is indicative of it originating from the S0 state. The S0 state signal will provide invaluable information toward the understanding of oxygen evolution in plants

    The S0 State EPR Signal from the Mn Cluster in Photosystem II Arises from an Isolated S = 1/2 Ground State

    No full text
    During oxygen evolution, the Mn cluster in Photosystem II cycles through five oxidation states, S0-S4. S0 and S2 are paramagnetic, and can be monitored by electron paramagnetic resonance (EPR). Recently a new EPR signal from the S0 state was discovered [Åhrling et al. (1997) Biochemistry 36, 13148-13152, Messinger et al. (1997) J. Am. Chem. Soc. 119, 11349-11350]. Here, we present a well-resolved S0 spectrum, taken at high power and low temperature. The spectrum is wider and more resolved than previously thought, with structure over more than 2500 G, and appears to have at least 20 reproducible peaks on each side of g = 2. We also present the temperature dependence of the unsaturated S0 signal amplitude. A linear relationship was found between signal intensity and reciprocal temperature (1/T) in the region 5-25 K, clearly extrapolating to 0. This obeys the Curie law, indicating that the S0 state is a ground S = 1/2 state with no thermally accessible excited state. The data are consistent with a minimum energy gap of 30 cm-1 between the ground and first excited states

    The EPR Signals from the S 0

    No full text

    Flash-induced relaxation changes of the EPR signals from the manganese cluster and YD reveal a light-adaptation process of Photosystem II

    No full text
    By exposing photosystem II (PSII) samples to an incrementing number of excitation flashes at room temperature, followed by freezing, we could compare the Mn-derived multiline EPR signal from the S-2 oxidation state as prepared by 1, 5, 10, and 25 flashes of light. While the S-2 multiline signals exhibited by these samples differed very little in spectral shape, a significant increase of the relaxation rate of the signal was detected in the multiflash samples as compared to the S-2-state produced by a single oxidation. A similar relaxation rate increase was observed for the EPR signal from Y-D(.). The temperature dependence of the multiline spin-lattice relaxation rate is similar after 1 and 5 flashes. These data are discussed together with previously reported phenomena in terms of a light-adaptation process of PSII, which commences on the third flash after dark-adaptation and is completed after 10 flashes. At room temperature, the fast-relaxing, light-adapted state falls back to the slow-relaxing, dark-adapted state with t(1/2) = 80 s. We speculate that light-adaptation involves changes necessary for efficient continuous water splitting. This would parallel activation processes found in many other large redox enzymes, such as Cytochrome c oxidase and Ni-Fe hydrogenase. Several mechanisms of light-adaptation are discussed, and we find that the data may be accounted for by a change of the PSII protein matrix or by the light-induced appearance of a paramagnetic center on the PSII donor side. At this time, no EPR signal has been detected that correlates with the increase of the relaxation rates, and the nature of such a new paramagnet remains unclear. However, the relaxation enhancement data could be used, in conjunction with the known Mn-Y-D distance, to estimate the position of such an unknown relaxer. If positioned between Y-D and the Mn cluster, it would be located 7-8 Angstrom from the spin center of the S-2 multiline signal
    corecore