631 research outputs found

    Operations and single particle interferometry

    Full text link
    Interferometry of single particles with internal degrees of freedom is investigated. We discuss the interference patterns obtained when an internal state evolution device is inserted into one or both the paths of the interferometer. The interference pattern obtained is not uniquely determined by the completely positive maps (CPMs) that describe how the devices evolve the internal state of a particle. By using the concept of gluing of CPMs, we investigate the structure of all possible interference patterns obtainable for given trace preserving internal state CPMs. We discuss what can be inferred about the gluing, given a sufficiently rich set of interference experiments. It is shown that the standard interferometric setup is limited in its abilities to distinguish different gluings. A generalized interferometric setup is introduced with the capacity to distinguish all gluings. We also connect to another approach using the well known fact that channels can be realized using a joint unitary evolution of the system and an ancillary system. We deduce the set of all such unitary `representations' and relate the structure of this set to gluings and interference phenomena.Comment: Journal reference added. Material adde

    Fidelity and coherence measures from interference

    Get PDF
    By utilizing single particle interferometry, the fidelity or coherence of a pair of quantum states is identified with their capacity for interference. We consider processes acting on the internal degree of freedom (e.g., spin or polarization) of the interfering particle, preparing it in states ρA or ρB in the respective path of the interferometer. The maximal visibility depends on the choice of interferometer, as well as the locality or nonlocality of the preparations, but otherwise depends only on the states ρA and ρB and not the individual preparation processes themselves. This allows us to define interferometric measures which probe locality and correlation properties of spatially or temporally separated processes, and can be used to differentiate between processes that cannot be distinguished by direct process tomography using only the internal state of the particle

    Collective motion in quantum diffusive environment

    Full text link
    The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to energy diffusion of intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear many-body system, a set of coupled dynamical equations for the collective classical variable and the quantum mechanical occupancies of the intrinsic nuclear states is derived. Different dynamical regimes of the intrinsic nuclear motion and its consequences on time properties of collective dissipation are discussed.Comment: 15 pages, 5 figure

    Semiclassical Theory of Bardeen-Cooper-Schrieffer Pairing-Gap Fluctuations

    Full text link
    Superfluidity and superconductivity are genuine many-body manifestations of quantum coherence. For finite-size systems the associated pairing gap fluctuates as a function of size or shape. We provide a parameter free theoretical description of pairing fluctuations in mesoscopic systems characterized by order/chaos dynamics. The theory accurately describes experimental observations of nuclear superfluidity (regular system), predicts universal fluctuations of superconductivity in small chaotic metallic grains, and provides a global analysis in ultracold Fermi gases.Comment: 4 pages, 2 figure

    Operational approach to the Uhlmann holonomy

    Full text link
    We suggest a physical interpretation of the Uhlmann amplitude of a density operator. Given this interpretation we propose an operational approach to obtain the Uhlmann condition for parallelity. This allows us to realize parallel transport along a sequence of density operators by an iterative preparation procedure. At the final step the resulting Uhlmann holonomy can be determined via interferometric measurements.Comment: Added material, references, and journal reference

    Survival Probability of a Doorway State in regular and chaotic environments

    Full text link
    We calculate survival probability of a special state which couples randomly to a regular or chaotic environment. The environment is modelled by a suitably chosen random matrix ensemble. The exact results exhibit non--perturbative features as revival of probability and non--ergodicity. The role of background complexity and of coupling complexity is discussed as well.Comment: 19 pages 5 Figure

    Exact Coupling Coefficient Distribution in the Doorway Mechanism

    Full text link
    In many--body and other systems, the physics situation often allows one to interpret certain, distinct states by means of a simple picture. In this interpretation, the distinct states are not eigenstates of the full Hamiltonian. Hence, there is an interaction which makes the distinct states act as doorways into background states which are modeled statistically. The crucial quantities are the overlaps between the eigenstates of the full Hamiltonian and the doorway states, that is, the coupling coefficients occuring in the expansion of true eigenstates in the simple model basis. Recently, the distribution of the maximum coupling coefficients was introduced as a new, highly sensitive statistical observable. In the particularly important regime of weak interactions, this distribution is very well approximated by the fidelity distribution, defined as the distribution of the overlap between the doorway states with interaction and without interaction. Using a random matrix model, we calculate the latter distribution exactly for regular and chaotic background states in the cases of preserved and fully broken time--reversal invariance. We also perform numerical simulations and find excellent agreement with our analytical results.Comment: 22 pages, 4 figure

    Chaoticity and Shell Effects in the Nearest-Neighbor Distributions

    Full text link
    Statistics of the single-particle levels in a deformed Woods-Saxon potential is analyzed in terms of the Poisson and Wigner nearest-neighbor distributions for several deformations and multipolarities of its surface distortions. We found the significant differences of all the distributions with a fixed value of the angular momentum projection of the particle, more closely to the Wigner distribution, in contrast to the full spectra with Poisson-like behavior. Important shell effects are observed in the nearest neighbor spacing distributions, the larger the smaller deformations of the surface multipolarities.Comment: 10 pages and 9 figure
    corecore