279 research outputs found

    Unimodular gravity redux

    Full text link

    The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory

    Get PDF
    The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle. As a polarimeter IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive line of Fe I at 5250.2 AA and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time cadences vary between ten and 33 seconds, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are four Gauss for longitudinal fields and 80 Gauss for transverse fields per wavelength sample. The LOS velocities are estimated with statistical errors of the order of 5-40 m/s. The design, calibration and integration phases of the instrument, together with the implemented data reduction scheme are described in some detail.Comment: 17 figure

    2D magnetic domain wall ratchet: The limit of submicrometric holes

    Get PDF
    The study of ratchet and crossed-ratchet effects in magnetic domain wall motion through 2D arrays of asymmetric holes is extended in this article to the submicrometric limit in hole size (small size regime). Therefore, the gap has been closed between the 2D ratchets in the range of tens-of-micrometers (large size regime) and the small size regime 1D ratchets based on nanowires. The combination of Kerr microscopy, X-ray PhotoEmission Electron Microscopy and micromagnetic simulations has allowed a full magnetic characterisation of both the domain wall (DW) propagation process over the whole array and the local DW morphology and pinning at the holes. It is found that the 2D small size limit is driven by the interplay between DW elasticity and half vortex propagation along hole edges: as hole size becomes comparable to DW width, flat DW propagation modes are favoured over kinked DW propagation due to an enhancement of DW stiffness, and pinned DW segments adopt asymmetric configurations related with Néel DW chirality. Nevertheless, both ratchet and crossed-ratchet effects have been experimentally found, and we propose a new ratchet/inverted-ratchet effect in the submicrometric range driven by magnetic fields and electrical currents respectively

    The second flight of the SUNRISE balloon-borne solar observatory: overview of instrument updates, the flight, the data and first results

    Full text link
    The SUNRISE balloon-borne solar observatory, consisting of a 1~m aperture telescope that provided a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in June 2013. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg~{\sc ii}~k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000~\AA\ after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR~11768 observed relatively close to disk centre is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500~G and, while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.Comment: Accepted for publication in The Astrophysical Journa

    Pulsed electric field increases the extraction yield of extra virgin olive oil without loss of its biological properties

    Get PDF
    Introduction: Pulsed electric field (PEF) has been used for improving extraction of extra virgin olive oil (EVOO). However, the biological changes induced by the consumption of pulsed electric field-obtained extra virgin olive oil (PEFEVOO) have not been studied yet. Materials and methods: EVOO oils from Empeltre variety were prepared by standard (STD) cold pressure method involving crushing of the olives, malaxation and decanting and by this procedure including an additional step of PEF treatment. Chemical analyses of EVOO oils were done. Male and female Apoe-deficient mice received diets differing in both EVOOs for 12 weeks, and their plasma, aortas and livers were analyzed. Results: PEF application resulted in a 17% increase in the oil yield and minimal changes in chemical composition regarding phytosterols, phenolic compounds and microRNA. Only in females mice consuming PEF EVOO, a decreased plasma total cholesterol was observed, without significant changes in atherosclerosis and liver steatosis. Conclusion: PEF technology applied to EVOO extraction maintains the EVOO quality and improves the oil yield. The equivalent biological effects in atherosclerosis and fatty liver disease of PEF-obtained EVOO further support its safe use as a food

    Ig-Like Transcript 2 (ILT2) Blockade and Lenalidomide Restore NK Cell Function in Chronic Lymphocytic Leukemia

    Get PDF
    One of the cardinal features of chronic lymphocytic leukemia (CLL) is its association with a profound immunosuppression. NK cell function is markedly impaired in CLL patients, who show a significant dysregulation of the expression of activating and inhibitory receptors. Here, we analyzed the role of the novel inhibitory receptor Ig-like transcript 2 (ILT2, also termed LIR-1, LILRB1) in the regulation of NK cells in CLL. Our results show that ILT2 expression was significantly decreased on leukemic cells and increased on NK cells of CLL patients, particularly in those with advanced disease and with bad prognostic features, such as those carrying chromosome del(11q). The immunomodulatory drug lenalidomide may regulate the expression of ILT2 and its ligands in CLL since it significantly increased the expression of ILT2 and partially reestablished the expression of its ligands on leukemic cells. Furthermore, lenalidomide significantly increased the activation and proliferation of NK cells, which was strongly enhanced by ILT2 blockade. Combining ILT2 blockade and lenalidomide activated NK cell cytotoxicity resulting in increased elimination of leukemic cells from CLL patients. Overall, we describe herein the role of an inhibitory receptor involved in the suppression of NK cell activity in CLL, which is restored by ILT2 blockade in combination with lenalidomide, suggesting that it may be an interesting therapeutic strategy to be explored in this disease

    Demonstration of event position reconstruction based on diffusion in the NEXT-white detector

    Get PDF
    [EN] Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from Kr-83m calibration electron captures (E similar to 45 keV), the position of origin of low-energy events is determined to 2 cm precision with bias = 1.5 MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q(beta beta) in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Grant Agreement No. 951281-BOLD; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under Grant Agreement No. 957202-HIDDEN; the MCIN/AEI of Spain and ERDF A way of making Europe under grants PID2021-125475NB and the Severo Ochoa Program grant CEX2018-000867-S; the Generalitat Valenciana of Spain under grants PROMETEO/2021/087 and CIDEGENT/2019/049; the Department of Education of the Basque Government of Spain under the predoctoral training program non-doctoral research personnel; the Spanish la Caixa Foundation (ID 100010434) under fellowship code LCF/BQ/PI22/11910019; the Portuguese FCT under project UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the Israel Science Foundation (ISF) under grant 1223/21; the Pazy Foundation (Israel) under grants 310/22, 315/19 and 465; the US Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A &M), DE-SC0019054 (Texas Arlington) and DE-SC0019223 (Texas Arlington); the US National Science Foundation under award number NSF CHE 2004111; the Robert A Welch Foundation under award number Y-2031-20200401.Haefner, J.; Navarro, K.; Guenette, R.; Jones, B.; Tripathi, A.; Adams, C.; Almazán, H.... (2024). Demonstration of event position reconstruction based on diffusion in the NEXT-white detector. The European Physical Journal C. 84(5). https://doi.org/10.1140/epjc/s10052-024-12865-984

    Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of neutrinoless double-beta decay decay better than 1E27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure
    corecore