19,141 research outputs found

    Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks

    Get PDF
    The narrow power decay-length (λq\lambda_q), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles measured is found to arise due to radially sheared E⃗×B⃗\vec{E}\times\vec{B} poloidal flows. A complex interaction between sheared flows and outflowing plasma currents regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL λq\lambda_q is roughly equal to the turbulent correlation length.Comment: 5 pages, 5 figure

    Explicit generation of the branching tree of states in spin glasses

    Full text link
    We present a numerical method to generate explicit realizations of the tree of states in mean-field spin glasses. The resulting study illuminates the physical meaning of the full replica symmetry breaking solution and provides detailed information on the structure of the spin-glass phase. A cavity approach ensures that the method is self-consistent and permits the evaluation of sophisticated observables, such as correlation functions. We include an example application to the study of finite-size effects in single-sample overlap probability distributions, a topic that has attracted considerable interest recently.Comment: Version accepted for publication in JSTA

    A molecular dynamics simulation of water confined in a cylindrical SiO2 pore

    Full text link
    A molecular dynamics simulation of water confined in a silica pore is performed in order to compare it with recent experimental results on water confined in porous Vycor glass at room temperature. A cylindrical pore of 40 A is created inside a vitreous SiO2 cell, obtained by computer simulation. The resulting cavity offers to water a rough hydrophilic surface and its geometry and size are similar to those of a typical pore in porous Vycor glass. The site-site distribution functions of water inside the pore are evaluated and compared with bulk water results. We find that the modifications of the site-site distribution functions, induced by confinement, are in qualitative agreement with the recent neutron diffraction experiment, confirming that the disturbance to the microscopic structure of water mainly concerns orientational arrangement of neighbouring molecules. A layer analysis of MD results indicates that, while the geometrical constraint gives an almost constant density profile up to the layers closest to the interface, with an uniform average number of hydrogen bonds (HB), the hydrophilic interaction produces the wetting of the pore surface at the expenses of the adjacent water layers. Moreover the orientational disorder togheter with a reduction of the average number of HB persists in the layers close to the interface, while water molecules cluster in the middle of the pore at a density and with a coordination similar to bulk water.Comment: RevTex, 11 pages, 12 figures; to appear in June 15 issue of J. Chem. Phy
    • …
    corecore