2,742 research outputs found
Putative spin liquid in the triangle-based iridate BaIrTiO
We report on thermodynamic, magnetization, and muon spin relaxation
measurements of the strong spin-orbit coupled iridate BaIrTiO,
which constitutes a new frustration motif made up a mixture of edge- and
corner-sharing triangles. In spite of strong antiferromagnetic exchange
interaction of the order of 100~K, we find no hint for long-range magnetic
order down to 23 mK. The magnetic specific heat data unveil the -linear and
-squared dependences at low temperatures below 1~K. At the respective
temperatures, the zero-field muon spin relaxation features a persistent spin
dynamics, indicative of unconventional low-energy excitations. A comparison to
the isostructural compound BaRuTiO suggests that a concerted
interplay of compass-like magnetic interactions and frustrated geometry
promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte
Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin.
Cytokinins are phytohormones that induce cytokinesis and are essential for diverse developmental and physiological processes in plants. Cytokinins of the trans-zeatin type are mainly synthesized in root vasculature and transported to the shoot, where they regulate shoot growth. However, the mechanism of long-distance transport of cytokinin was hitherto unknown. Here, we report that the Arabidopsis ATP-binding cassette (ABC) transporter subfamily G14 (AtABCG14) is mainly expressed in roots and plays a major role in delivering cytokinins to the shoot. Loss of AtABCG14 expression resulted in severe shoot growth retardation, which was rescued by exogenous trans-zeatin application. Cytokinin content was decreased in the shoots of atabcg14 plants and increased in the roots, with consistent changes in the expression of cytokinin-responsive genes. Grafting of atabcg14 scions onto wild-type rootstocks restored shoot growth, whereas wild-type scions grafted onto atabcg14 rootstocks exhibited shoot growth retardation similar to that of atabcg14. Cytokinin concentrations in the xylem are reduced by similar to 90% in the atabcg14 mutant. These results indicate that AtABCG14 is crucial for the translocation of cytokinin to the shoot. Our results provide molecular evidence for the long-distance transport of cytokinin and show that this transport is necessary for normal shoot development.open118380Ysciescopu
Preparation and Characterization of Low Dielectric Methyl Silsesquioxane (MSSQ) Thin Films
As feature sizes in integrated circuits approach 0.18 ㎛ and below, problems such as interconnect RC delay and crosstalk become more serious. Materials with low dielectric constants are needed
to solve these problems. We applied methyl silsesquioxane (MSSQ) as a low dielectric material and studied the film formation condition and the electrical properties of MSSQ films. MSSQ dissolved in a propylene glycol methyl ether acetate (PGMEA) and MSSQ/PGMEA solution was spun on glass substrates at various concentrations. Spinning at 2,500 rpm for 30 sec resulted in films with thicknesses of 6,500 A. Then, we cured the films by heating and measured the electrical properties of samples sandwiched between Al electrodes. The dielectric constant was ~ 2.7, the breakdown strength was about 2.3 MV/cm, and the leakage current was 5.4 X 10-10 A/cm2. Dynamic Mechanical Analysis (DMA) indicated that the curing reaction started at about 200 ℃ and proceeded very fast up to 250 ℃. The structural change in the MSSQ films during curing was monitored by following the Fourier Transform Infrared (FTIR) absorption intensity of the Si-O stretching vibration, which showed that the Si-O structure became more asymmetric during curing and/or network formation.This work was supported in part by the Korean
Collaborative Project for Excellence in Basic System
IC Technology (98-B4-C0-00-01-00) and the Korea Science
and Engineering Foundation (KOSEF) through
the Hyperstructured Organic Materials Research Center
(HOMRC)
Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells
<p>Abstract</p> <p>Background</p> <p>Luteolin is a 3',4',5,7-tetrahydroxyflavone found in various fruits and vegetables. We have shown previously that luteolin reduces HT-29 cell growth by inducing apoptosis and cell cycle arrest. The objective of this study was to examine whether luteolin downregulates the insulin-like growth factor-I receptor (IGF-IR) signaling pathway in HT-29 cells.</p> <p>Methods</p> <p>In order to assess the effects of luteolin and/or IGF-I on the IGF-IR signaling pathway, cells were cultured with or without 60 μmol/L luteolin and/or 10 nmol/L IGF-I. Cell proliferation, DNA synthesis, and IGF-IR mRNA levels were evaluated by a cell viability assay, [<sup>3</sup>H]thymidine incorporation assays, and real-time polymerase chain reaction, respectively. Western blot analyses, immunoprecipitation, and <it>in vitro </it>kinase assays were conducted to evaluate the secretion of IGF-II, the protein expression and activation of IGF-IR, and the association of the p85 subunit of phophatidylinositol-3 kinase (PI3K) with IGF-IR, the phosphorylation of Akt and extracellular signal-regulated kinase (ERK)1/2, and cell division cycle 25c (CDC25c), and PI3K activity.</p> <p>Results</p> <p>Luteolin (0 - 60 μmol/L) dose-dependently reduced the IGF-II secretion of HT-29 cells. IGF-I stimulated HT-29 cell growth but did not abrogate luteolin-induced growth inhibition. Luteolin reduced the levels of the IGF-IR precursor protein and IGF-IR transcripts. Luteolin reduced the IGF-I-induced tyrosine phosphorylation of IGF-IR and the association of p85 with IGF-IR. Additionally, luteolin inhibited the activity of PI3K activity as well as the phosphorylation of Akt, ERK1/2, and CDC25c in the presence and absence of IGF-I stimulation.</p> <p>Conclusions</p> <p>The present results demonstrate that luteolin downregulates the activation of the PI3K/Akt and ERK1/2 pathways via a reduction in IGF-IR signaling in HT-29 cells; this may be one of the mechanisms responsible for the observed luteolin-induced apoptosis and cell cycle arrest.</p
Organosilicate Spin-on Glasses II. Effect of Physical Modification on Mechanical Properties
Porous copolymer films were synthesized from a methylsilsequioxane:1,2-bis(trimethoxysilyl)ethane (MSSQ:BTMSE) matrix and either an aromatic-core or aliphatic-core porogen at 10, 20, or 30 wt % porogen loading. Films were characterized using scanning electron microscopy (SEM), IR spectroscopy, and ellipsometry. Depth-sensing indentation experiments were performed to measure apparent film modulus, E, and hardness, H. Indentation load-displacement traces and SEM images were used to determine the threshold load for cracking, Pc. The aliphatic-core porogen produced a greater porosity film than the aromatic-core porogen for 10 wt % loading and smaller porosity films for 20 and 30 wt % loadings. IR spectra, normalized for film thickness and density, indicated decreased O-Si-O networking in porous MSSQ:BTMSE films. The combination of increased porosity and decreased O-Si-O networking led to a decreased apparent E and H relative to the unmodified MSSQ:BTMSE film. However, low-porosity (approximately 7%), aliphatic-porogen MSSQ:BTMSE films are optimized relative to unmodified MSSQ with smaller dielectric constant and greater E and H.This work is supported by the Korean Collaborative Project for Excellence in Basic System IC Technology (System IC 2010: 98-
B4-C0-00-01-00-02). Financial support from the Ministry of Science and Technology (MOST) and the Korean Ministry of Education
through the National Research Laboratory Fund and the Brain Korea 21 Program, respectively, is also greatly acknowledged
PicXAA-R: Efficient structural alignment of multiple RNA sequences using a greedy approach
<p>Abstract</p> <p>Background</p> <p>Accurate and efficient structural alignment of non-coding RNAs (ncRNAs) has grasped more and more attentions as recent studies unveiled the significance of ncRNAs in living organisms. While the Sankoff style structural alignment algorithms cannot efficiently serve for multiple sequences, mostly progressive schemes are used to reduce the complexity. However, this idea tends to propagate the early stage errors throughout the entire process, thereby degrading the quality of the final alignment. For multiple protein sequence alignment, we have recently proposed PicXAA which constructs an accurate alignment in a non-progressive fashion.</p> <p>Results</p> <p>Here, we propose PicXAA-R as an extension to PicXAA for greedy structural alignment of ncRNAs. PicXAA-R efficiently grasps both folding information within each sequence and local similarities between sequences. It uses a set of probabilistic consistency transformations to improve the posterior base-pairing and base alignment probabilities using the information of all sequences in the alignment. Using a graph-based scheme, we greedily build up the structural alignment from sequence regions with high base-pairing and base alignment probabilities.</p> <p>Conclusions</p> <p>Several experiments on datasets with different characteristics confirm that PicXAA-R is one of the fastest algorithms for structural alignment of multiple RNAs and it consistently yields accurate alignment results, especially for datasets with locally similar sequences. PicXAA-R source code is freely available at: <url>http://www.ece.tamu.edu/~bjyoon/picxaa/</url>.</p
- …