1,033 research outputs found

    Resolving discrete pulsar spin-down states with current and future instrumentation

    Full text link
    An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates (ν˙)(\dot{\nu}). Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of ν˙\dot{\nu}-variable pulsars to investigate the likelihood of resolving individual ν˙\dot{\nu} transitions. We inject step-changes in the value of ν˙\dot{\nu} with a wide range of amplitudes and switching timescales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on ν˙\dot{\nu} detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programs, we find we are insensitive to a large region of Δν˙\Delta \dot{\nu} parameter space which encompasses small, short timescale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate ν˙\dot{\nu} transition epochs, can improve detectability in certain scenarios. The effects of cadence on Δν˙\Delta \dot{\nu} detectability are discussed and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short timescale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.Comment: 19 pages, 11 figure

    A deep search for pulsar wind nebulae using pulsar gating

    Get PDF
    Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906-49; here we report on non-detections of PWNe towards PSRs B1046-58, B1055-52, B1610-50 and J1105-6107. Our radio observations of the field around PSR B1055-52 argue against previous claims of an extended X-ray and radio PWNe associated with the pulsar. If these pulsars power unseen, compact radio PWN, upper limits on the radio flux indicate that less than 1e-6 of their spin-down energy is used to power this emission. Alternatively PSR B1046-58 and PSR B1610-50 may have relativistic winds similar to other young pulsars and the unseen PWN is resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local ISM density of 2.2e-3 cm^-3 and 1e-2 cm^-3, respectively. Furthermore we constrain the spatial velocities of these pulsars to be less than ~450 km/s and thus rule out the association of PSR B1610-50 with SNR G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.Comment: 10 pages, 5 figures, MNRAS in pres

    Gravitational Wave Hotspots: Ranking Potential Locations of Single-Source Gravitational Wave Emission

    Get PDF
    The steadily improving sensitivity of pulsar timing arrays (PTAs) suggests that gravitational waves (GWs) from supermassive black hole binary (SMBHB) systems in the nearby universe will be de- tectable sometime during the next decade. Currently, PTAs assume an equal probability of detection from every sky position, but as evidence grows for a non-isotropic distribution of sources, is there a most likely sky position for a detectable single source of GWs? In this paper, a collection of galactic catalogs is used to calculate various metrics related to the detectability of a single GW source resolv- able above a GW background, assuming that every galaxy has the same probability of containing a SMBHB. Our analyses of these data reveal small probabilities that one of these sources is currently in the PTA band, but as sensitivity is improved regions of consistent probability density are found in predictable locations, specifically around local galaxy clusters.Comment: 9 pages, 9 figures, accepted for submission in Ap

    On the Apparent Nulls and Extreme Variability of PSR J1107-5907

    Full text link
    We present an analysis of the emission behaviour of PSR J1107-5907, a source known to exhibit separate modes of emission, using observations obtained over approximately 10 yr. We find that the object exhibits two distinct modes of emission; a strong mode with a broad profile and a weak mode with a narrow profile. During the strong mode of emission, the pulsar typically radiates very energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with apparent nulls over time-scales of up to a few pulses at a time. Emission during the weak mode is observed outside of these strong-mode sequences and manifests as occasional bursts of up to a few clearly detectable pulses at a time, as well as low-level underlying emission which is only detected through profile integration. This implies that the previously described null mode may in fact be representative of the bottom-end of the pulse intensity distribution for the source. This is supported by the dramatic pulse-to-pulse intensity modulation and rarity of exceptionally bright pulses observed during both modes of emission. Coupled with the fact that the source could be interpreted as a rotating radio transient (RRAT)-like object for the vast majority of the time, if placed at a further distance, we advance that this object likely represents a bridge between RRATs and extreme moding pulsars. Further to these emission properties, we also show that the source is consistent with being a near-aligned rotator and that it does not exhibit any measurable spin-down rate variation. These results suggest that nulls observed in other intermittent objects may in fact be representative of very weak emission without the need for complete cessation. As such, we argue that longer (> 1 h) observations of pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Neutron star glitches have a substantial minimum size

    Get PDF
    Glitches are sudden spin-up events that punctuate the steady spin down of pulsars and are thought to be due to the presence of a superfluid component within neutron stars. The precise glitch mechanism and its trigger, however, remain unknown. The size of glitches is a key diagnostic for models of the underlying physics. While the largest glitches have long been taken into account by theoretical models, it has always been assumed that the minimum size lay below the detectability limit of the measurements. In this paper we define general glitch detectability limits and use them on 29 years of daily observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We find that all glitches lie well above the detectability limits and by using an automated method to search for small events we are able to uncover the full glitch size distribution, with no biases. Contrary to the prediction of most models, the distribution presents a rapid decrease of the number of glitches below ~0.05 μ\muHz. This substantial minimum size indicates that a glitch must involve the motion of at least several billion superfluid vortices and provides an extra observable which can greatly help the identification of the trigger mechanism. Our study also shows that glitches are clearly separated from all the other rotation irregularities. This supports the idea that the origin of glitches is different to that of timing noise, which comprises the unmodelled random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA

    Very Long Baseline Interferometry Measured Proper Motion and Parallax of the γ\gamma-ray Millisecond Pulsar PSR J0218+4232

    Full text link
    PSR J0218++4232 is a millisecond pulsar (MSP) with a flux density \sim 0.9 mJy at 1.4 GHz. It is very bright in the high-energy X-ray and γ\gamma-ray domains. We conducted an astrometric program using the European VLBI Network (EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent distance would also help constrain its γ\gamma-ray luminosity. We achieved a detection of signal-to-noise ratio S/N > 37 for the weak pulsar in all five epochs. Using an extragalactic radio source lying 20 arcmin away from the pulsar, we estimate the pulsar's proper motion to be μαcosδ=5.35±0.05\mu_{\alpha}\cos\delta=5.35\pm0.05 mas yr1^{-1} and μδ=3.74±0.12\mu_{\delta}=-3.74\pm 0.12 mas yr1^{-1}, and a parallax of π=0.16±0.09\pi=0.16\pm0.09 mas. The very long baseline interferometry (VLBI) proper motion has significantly improved upon the estimates from long-term pulsar timing observations. The VLBI parallax provides the first model-independent distance constraints: d=6.32.3+8.0d=6.3^{+8.0}_{-2.3} kpc, with a corresponding 3σ3\sigma lower-limit of d=2.3d=2.3 kpc. This is the first pulsar trigonometric parallax measurement based solely on EVN observations. Using the derived distance, we believe that PSR J0218++4232 is the most energetic γ\gamma-ray MSP known to date. The luminosity based on even our 3σ\sigma lower-limit distance is high enough to pose challenges to the conventional outer gap and slot gap models.Comment: 5 pages, 2 figures, 2 tables; published in the Astrophysical Journal Letters on 2014 Feb. 1

    Search for Discrete Refractive Scattering Events

    Get PDF
    We have searched for discrete refractive scattering events (including effects due to possible non-multiple diffractive scattering) at meter wavelengths in the direction of two close by pulsars B0950+08 and B1929+10, where we looked for spectral signatures associated with the multiple imaging of pulsars due to scattering in the interstellar medium. We do not find any signatures of such events in the direction of either source over a spectral periodicity range of 50 KHz to 5 MHz. Our analysis puts strong upper limits on the column density contrast associated with a range of spatial scales of the interstellar electron density irregularities along these lines of sight.Comment: Accepted for publication in Astronomy & Astrophysic

    Are all fast radio bursts repeating sources?

    Full text link
    We present Monte-Carlo simulations of a cosmological population of repeating fast radio burst (FRB) sources whose comoving density follows the cosmic star formation rate history. We assume a power-law model for the intrinsic energy distribution for each repeating FRB source located at a randomly chosen position in the sky and simulate their dispersion measures (DMs) and propagation effects along the chosen lines-of-sight to various telescopes. In one scenario, an exponential distribution for the intrinsic wait times between pulses is chosen, and in a second scenario we model the observed pulse arrival times to follow a Weibull distribution. For both models we determine whether the FRB source would be deemed a repeater based on the telescope sensitivity and time spent on follow-up observations. We are unable to rule out the existence of a single FRB population based on comparisons of our simulations with the longest FRB follow-up observations performed. We however rule out the possibility of FRBs 171020 and 010724 repeating with the same rate statistics as FRB 121102 and also constrain the slope of a power-law fit to the FRB energy distribution to be 2.0<γ<1.0-2.0 < \gamma <-1.0. All-sky simulations of repeating FRB sources imply that the detection of singular events correspond to the bright tail-end of the adopted energy distribution due to the combination of the increase in volume probed with distance, and the position of the burst in the telescope beam.Comment: 10 pages, 4 figures, accepted for publication in MNRA
    corecore