825 research outputs found

    Line emission from filaments in molecular clouds

    Get PDF
    Filamentary structures are often identified in column density maps of molecular clouds, and appear to be important for both low- and high-mass star formation. Theoretically, these structures are expected to form in regions where the supersonic cloud-scale turbulent velocity field converges. While this model of filament formation successfully reproduces several of their properties derived from column densities, it is unclear whether it can also reproduce their kinematic features. We use a combination of hydrodynamical, chemical and radiative transfer modelling to predict the emission properties of these dynamically-forming filaments in the 13^{13}CO, HCN and N2_2H+^+ J=10J=1-0 rotational lines. The results are largely in agreement with observations; in particular, line widths are typically subsonic to transonic, even for filaments which have formed from highly supersonic inflows. If the observed filaments are formed dynamically, as our results suggest, no equilibrium analysis is possible, and simulations which presuppose the existence of a filament are likely to produce unrealistic results.Comment: 9 pages, 9 figures. MNRAS accepte

    New Binary and Millisecond Pulsars from Arecibo Drift-Scan Searches

    Full text link
    We discuss four recycled pulsars found in Arecibo drift-scan searches. PSR J1944+0907 has a spin period of 5.2 ms and is isolated. The 5.8-ms pulsar J1453+19 may have a low-mass companion. We discuss these pulsars in the context of isolated millisecond pulsar formation and the minimum spin period of neutron stars. The isolated 56-ms pulsar J0609+2130 is possibly the remnant of a disrupted double neutron star binary. The 41-ms pulsar J1829+2456 is in a relativistic orbit. Its companion is most likely another neutron star, making this the eighth known double neutron star binary system.Comment: 6 pages, 3 figures, to appear in proceedings of Aspen Center for Physics Conference on ``Binary Radio Pulsars'' Eds. F. Rasio and I. Stair

    Correlation between X-ray Lightcurve Shape and Radio Arrival Time in the Vela Pulsar

    Get PDF
    We report the results of simultaneous observations of the Vela pulsar in X-rays and radio from the RXTE satellite and the Mount Pleasant Radio Observatory in Tasmania. We sought correlations between the Vela's X-ray emission and radio arrival times on a pulse by pulse basis. At a confidence level of 99.8% we have found significantly higher flux density in Vela's main X-ray peak during radio pulses that arrived early. This excess flux shifts to the 'trough' following the 2nd X-ray peak during radio pulses that arrive later. Our results suggest that the mechanism producing the radio pulses is intimately connected to the mechanism producing X-rays. Current models using resonant absorption of radio emission in the outer magnetosphere as a cause of the X-ray emission are explored as a possible explanation for the correlation.Comment: 6 pages, 5 figures, accepted by Ap

    PSR J0609+2130: A disrupted binary pulsar?

    Full text link
    We report the discovery and initial timing observations of a 55.7-ms pulsar, J0609+2130, found during a 430-MHz drift-scan survey with the Arecibo radio telescope. With a spin-down rate of 3.1×10193.1 \times 10^{-19} s s1^{-1} and an inferred surface dipole magnetic field of only 4.2×1094.2 \times 10^{9} G, J0609+2130 has very similar spin parameters to the isolated pulsar J2235+1506 found by Camilo, Nice & Taylor (1993). While the origin of these weakly magnetized isolated neutron stars is not fully understood, one intriguing possibility is that they are the remains of high-mass X-ray binary systems which were disrupted by the supernova explosion of the secondary star.Comment: 5 pages, 2 figures, accepted for publication in MNRAS (letters

    The Triple Pulsar System PSR B1620-26 in M4

    Get PDF
    The millisecond pulsar PSR B1620-26, in the globular cluster M4, has a white dwarf companion in a half-year orbit. Anomalously large variations in the pulsar's apparent spin-down rate have suggested the presence of a second companion in a much wider orbit. Using timing observations made on more than seven hundred days spanning eleven years, we confirm this anomalous timing behavior. We explicitly demonstrate, for the first time, that a timing model consisting of the sum of two non-interacting Keplerian orbits can account for the observed signal. Both circular and elliptical orbits are allowed, although highly eccentric orbits require improbable orbital geometries. The motion of the pulsar in the inner orbit is very nearly a Keplerian ellipse, but the tidal effects of the outer companion cause variations in the orbital elements. We have measured the change in the projected semi-major axis of the orbit, which is dominated by precession-driven changes in the orbital inclination. This measurement, along with limits on the rate of change of other orbital elements, can be used to significantly restrict the properties of the outer orbit. We find that the second companion most likely has a mass m~0.01 Msun --- it is almost certainly below the hydrogen burning limit (m<0.036 Msun, 95% confidence) --- and has a current distance from the binary of ~35 AU and orbital period of order one hundred years. Circular (and near-circular) orbits are allowed only if the pulsar magnetic field is ~3x10^9 G, an order of magnitude higher than a typical millisecond pulsar field strength. In this case, the companion has mass m~1.2x10^-3 Msun and orbital period ~62 years.Comment: 12 pages, 6 figures, 3 tables. Very minor clarifications and rewording. Accepted for publication in the Astrophys.

    Unifying low and high mass star formation through density amplified hubs of filaments

    Full text link
    Context: Star formation takes place in giant molecular clouds, resulting in mass-segregated young stellar clusters composed of Sun-like stars, brown dwarves, and massive O-type(50-100\msun) stars. Aims: To identify candidate hub-filament systems (HFS) in the Milky-Way and examine their role in the formation of the highest mass stars and star clusters. Methods: Filaments around ~35000 HiGAL clumps that are detected using the DisPerSE algorithm. Hub is defined as a junction of three or more filaments. Column density maps were masked by the filament skeletons and averaged for HFS and non-HFS samples to compute the radial profile along the filaments into the clumps. Results: ~3700~(11\%) are candidate HFS of which, ~2150~(60\%) are pre-stellar, ~1400~(40\%) are proto-stellar. All clumps with L>10^4 Lsun and L>10^5 Lsun at distances respectively within 2kpc and 5kpc are located in the hubs of HFS. The column-densities of hubs are found to be enhanced by a factor of ~2 (pre-stellar sources) up to ~10 (proto-stellar sources). Conclusions: All high-mass stars preferentially form in the density enhanced hubs of HFS. This amplification can drive the observed longitudinal flows along filaments providing further mass accretion. Radiation pressure and feedback can escape into the inter-filamentary voids. We propose a "filaments to clusters" unified paradigm for star formation, with the following salient features: a) low-intermediate mass stars form in the filaments slowly (10^6yr) and massive stars quickly (10^5yr) in the hub, b) the initial mass function is the sum of stars continuously created in the HFS with all massive stars formed in the hub, c) Feedback dissiption and mass segregation arise naturally due to HFS properties, and c) explain age spreads within bound clusters and formation of isolated OB associations.Comment: 20 pages, 17 figures, Accepted by Astronomy and Astrophysic

    Witnessing the fragmentation of a filament into prestellar cores in Orion B/NGC 2024

    Full text link
    Recent Herschel observations of nearby clouds have shown that filamentary structures are ubiquitous and that most prestellar cores form in filaments. Probing the density (nn) and velocity (VV) structure of filaments is crucial for the understanding of the star formation process. To characterize both the nn and the VV field of a fragmenting filament, we mapped NGC2024. 13CO, C18O, and H13CO+ trace the filament seen in the NH2N_{H_2} data. The radial profile from the NH2N_{H_2} data shows DHPD_{HP}~0.081 pc, which is similar to the Herschel findings. The DHPD_{HP} from 13CO and C18O are broader, while the DHPD_{HP} from H13CO+ is narrower, than DHPD_{HP} from Herschel. These results suggest that 13CO and C18O trace only the outer part of the filament and H13CO+ only the inner part. The H13CO+ VcentroidV_{centroid} map reveals VV gradients along both filament axis, as well as VV oscillations with a period λ\lambda~0.2 pc along the major axis. Comparison between the VV and the nn distribution shows a tentative λ\lambda/4 shift in H13CO+ or C18O. This λ\lambda/4 shift is not simultaneously observed for all cores in any single tracer but is tentatively seen in either H13CO+ or C18O. We produced a toy model taking into account a transverse VV gradient, a longitudinal VV gradient, and a longitudinal oscillation mode caused by fragmentation. Examination of synthetic data shows that the oscillation component produces an oscillation pattern in the velocity structure function (VSF) of the model. The H13CO+ VSF shows an oscillation pattern, suggesting that our observations are partly tracing core-forming motions and fragmentation. We also found that the mean McoreM_{core} corresponds to the effective MBEM_{BE} in the filament. This is consistent with a scenario in which higher-mass cores form in higher line-mass filaments.Comment: accepted in A&
    corecore