714,953 research outputs found

    PULSARS WITH STRONG MAGNETIC FIELDS: POLAR GAPS, BOUND PAIR CREATION AND NONTHERMAL LUMINOSITIES

    Get PDF
    Modifications to polar-gap models for pulsars are discussed for the case where the surface magnetic field, B§B_\S, of the neutron star is strong. For B\ga4\times10^8\rm\,T, the curvature γ\gamma-quanta emitted tangentially to the curved force lines of the magnetic field are captured near the threshold of bound pair creation and are channelled along the magnetic field as bound electron-positron pairs (positronium). The stability of such bound pairs against ionization by the parallel electric field, E∥E_\parallel, in the polar cap, and against photoionization is discussed. Unlike free pairs, bound pairs do not screen E∥E_\parallel near the neutron star. As a consequence, the energy flux in highly relativistic particles and high-frequency (X-ray and/or γ\gamma-ray) radiation from the polar gaps can be much greater than in the absence of positronium formation. We discuss this enhancement for (a) Arons-type models, in which particles flow freely from the surface, and find any enhancement to be modest, and (b) Ruderman-Sutherland-type models, in which particles are tightly bound to the surface, and find that the enhancement can be substantial. In the latter case we argue for a self-consistent, time-independent model in which partial screening of E∥E_\parallel maintains it close to the threshold value for field ionization of the bound pairs, and in which a reverse flux of accelerated particles maintains the polar cap at a temperature such that thermionic emission supplies the particles needed for this screening. This model applies only in a restricted range of periods, P2<P<P1P_2<P<P_1, and it implies an energy flux in high-energy particles that can correspond to a substantial fraction of the spin-down power of the pulsar. Nonthermal, high-frequency radiation has been observed from six radio pulsarsComment: TEX file, 47 pages. Accepted by Australian J. Phy

    Mass Dependence of Ultracold Three-Body Collision Rates

    Full text link
    We show that many aspects of ultracold three-body collisions can be controlled by choosing the mass ratio between the collision partners. In the ultracold regime, the scattering length dependence of the three-body rates can be substantially modified from the equal mass results. We demonstrate that the only non-trivial mass dependence is due solely to Efimov physics. We have determined the mass dependence of the three-body collision rates for all heteronuclear systems relevant for two-component atomic gases with resonant s-wave interspecies interactions, which includes only three-body systems with two identical bosons or two identical fermions

    Influence of high-energy electron irradiation on the transport properties of La_{1-x}Ca_{x}MnO_{3} films (x \approx 1/3)

    Full text link
    The effect of crystal lattice disorder on the conductivity and colossal magnetoresistance in La_{1-x}Ca_{x}MnO_{3} (x \approx 0.33) films has been examined. The lattice defects are introduced by irradiating the film with high-energy (\simeq 6 MeV) electrons with a maximal fluence of about 2\times 10^{17} cm^{-2}. This comparatively low dose of irradiation produces rather small radiation damage in the films. The number of displacements per atom (dpa) in the irradiated sample is about 10^{-5}. Nethertheless, this results in an appreciable increase in the film resistivity. The percentage of resistivity increase in the ferromagnetic metallic state (below the Curie tempetature T_{c}) was much greater than that observed in the insulating state (above T_{c}). At the same time irradiation has much less effect on T_{c} or on the magnitude of the colossal magnetoresistance. A possible explanation of such behavior is proposed.Comment: RevTex, 22 pages, 3 Postscript figures, submitted to Eur. Phys. J.

    Bloch inductance in small-capacitance Josephson junctions

    Full text link
    We show that the electrical impedance of a small-capacitance Josephson junction includes besides the capacitive term −i/ωCB-i/\omega C_B also an inductive term iωLBi\omega L_B. Similar to the known Bloch capacitance CB(q)C_B(q), the Bloch inductance LB(q)L_B(q) also depends periodically on the quasicharge qq, and its maximum value achieved at q=e(mod2e)q=e (\textrm{mod} 2e) always exceeds the value of the Josephson inductance of this junction LJ(ϕ)L_J(\phi) at fixed ϕ=0\phi=0. The effect of the Bloch inductance on the dynamics of a single junction and a one-dimensional array is described.Comment: 5 pages incl. 3 fig
    • …
    corecore