13,580 research outputs found

    Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells

    Get PDF
    Donor liver-derived dendritic cells (DC) have recently been identified within various lymphoid and nonlymphoid tissues of organ allograft recipients, including nonimmunosuppressed mice transplanted with and permanently accepting major histocompatibility complex (MHC)-disparate hepatic allografts. These findings have raised questions about the basis of the tolerogenicity of the liver—and, in particular, about the properties of liver-derived DC. To study further the structure, immunophenotype and allostimu-latory activity of leukocytes resident in normal mouse (B10.BR; H-2k, I-Ek) liver, a procedure was developed to maximize the yield of viable, nonparenchymal cells (NPC) obtained following collagenase digestion of perfused liver fragments and density centrifugation (Per-coll). These cells comprised populations expressing lymphoid and myeloid cell surface antigens. As compared with spleen cells, they proved good allostimula-tors of naive (BIO; H-2b, I-E") splenic T cells when tested in primary mixed leukocyte reactions (MLR). After overnight (18-hr) incubation of the NPC, enrichment for transiently adherent, low-density (LD) cells on metrizamide gradients permitted the recovery of low numbers of cells (approx. 2-5 × 105 per liver), many of which displayed distinct DC morphology. Flow cytometric analysis revealed that these cells were CD3-, CD4-, CD8-, and B220-, but strongly expressed CD45 (leukocyte-common antigen), and mild-to-moderate levels of CD lib, heat-stable antigen, and CD44. The cells also expressed moderate intensity of NLDC 145 but not 33D1, DC restricted markers which have been shown to be differentially expressed on mouse DC isolated from various organs. This DC-enriched population was more strongly MHC class II(I-Ek)+ than NPC, as determined by immunocytochemistry and flow cytometry and exhibited much more potent allo-stimulatory activity for naive T cells. These findings demonstrate that freshly isolated murine liver NPC, and perhaps their counterparts in situ, exhibit allo-stimulatory activity that is enhanced in the nonadherent, low-density (DC-enriched) fraction after overnight culture. They further suggest that the © 1994 by Williams and Wilkins

    Electronic phase separation in the rare earth manganates, (La1-xLnx)0.7Ca0.3MnO3 (Ln = Nd, Gd and Y)

    Full text link
    All the three series of manganates showsaturation magnetization characteristic of ferromagnetism, with the ferromagnetic Tc decreasing with increasing in x up to a critical value of x, xc (xc = 0.6, 0.3, 0.2 respectively for Nd, Gd, Y). For x > xc, the magnetic moments are considerably smaller showing a small increase around TM, the value of TM decreasing slightly with increase in x or decrease in . The ferromagnetic compositions (x xc) show insulator-metal (IM) transitions, while the compositions with x > xc are insulating. The magnetic and electrical resistivity behavior of these manganates is consistent with the occurrence of phase separation in the compositions around xc, corresponding to a critical average radius of the A-site cation, , of 1.18 A. Both Tc and TIM increase linearly when < rA > > or x xc as expected of a homogenous ferromagnetic phase. Both Tc and TM decrease linearly with the A-site cation size disorder at the A-site as measured by the variance s2. Thus, an increase in s2 favors the insulating AFM state. Percolative conduction is observed in the compositions with > < rAc >. Electron transport properties in the insulating regime for x > xc conforms to the variable range hopping mechanism. More interestingly, when x > xc, the real part of dielectric constant (e') reaches a high value (104-106) at ordinary temperatures dropping to a very small (~500) value below a certain temperature, the value of which decreases with decreasing frequency.Comment: 27 pages; 11 figures, Submitted to J.Phys:Condens Matte

    Mass And Heat Transfer Relations In Evaporation Through Porous Membranes

    Get PDF
    This study concerns rates of evaporation and mass transfer of water vapor from a heated salt solution through a water repellent porous membrane to a cooled water condensate. This transfer is a result of temperature differences and corresponding vapor pressure differences across the membrane. Three groups of experiments were carried out which indicate that the major factor influencing the rates of transfer is diffusion through a stagnant gas in the membrane pores. However, an equation considering film heat transfer coefficients, membrane thermal conductivity, and an empirical correction based on temperature driving force appears to be necessary for representing all the data. The empirical correction appears to be related to internal condensation and possibly diffusion along surfaces. Copyright © 1969 American Institute of Chemical Engineer

    Renormalization group study of the Kondo problem at a junction of several Luttinger wires

    Get PDF
    We study a system consisting of a junction of N quantum wires, where the junction is characterized by a scalar S-matrix, and an impurity spin is coupled to the electrons close to the junction. The wires are modeled as weakly interacting Tomonaga-Luttinger liquids. We derive the renormalization group equations for the Kondo couplings of the spin to the electronic modes on different wires, and analyze the renormalization group flows and fixed points for different values of the initial Kondo couplings and of the junction S-matrix (such as the decoupled S-matrix and the Griffiths S-matrix). We generally find that the Kondo couplings flow towards large and antiferromagnetic values in one of two possible ways. For the Griffiths S-matrix, we study one of the strong coupling flows by a perturbative expansion in the inverse of the Kondo coupling; we find that at large distances, the system approaches the ferromagnetic fixed point of the decoupled S-matrix. For the decoupled S-matrix with antiferromagnetic Kondo couplings and weak inter-electron interactions, the flows are to one of two strong coupling fixed points in which all the channels are strongly coupled to each other through the impurity spin. But strong inter-electron interactions, with K_\rho < N/(N+2), stabilize a multi-channel fixed point in which the coupling between different channels goes to zero. We have also studied the temperature dependence of the conductance at the decoupled and Griffiths S-matrices.Comment: Revtex4, 16 pages including 6 figure

    Peculiarities and variations in the optical spectrum of the post-AGB star V448Lac=IRAS22223+4327

    Full text link
    Repeated observations with high spectral resolution acquired in 1998-2008 are used to study the temporal behavior of the spectral line profiles and velocity field in the atmosphere and circumstellar envelope of the post-AGB star V448Lac. Asymmetry of the profiles of the strongest absorption lines with low-level excitation potentials less 1eV and time variations of these profiles have been detected, most prominently the profiles of the resonance lines of BaII, YII, LaII, SiII. The peculiarity of these profiles can be explained using a superposition of stellar absorption line and shell emission lines. Emission in the (0;1) 5635A Swan band of the C2 molecule has been detected in the spectrum of V448Lac for the first time. The core of the Halpha line displays radial velocity variations with an amplitude ~8 km/s. Radial velocity variations displayed by weakest metallic lines with lower amplitudes, 1-2 km/s, may be due to atmospheric pulsations. Differential line shifts, 0 -- 8 km/s, have been detected on various dates. The position of the molecular spectrum is stationary in time, indicating a constant expansion velocity of the circumstellar shell, Vexp=15.2 km/s, as derived from the C2 and NaI lines.Comment: 19 pages, 8 figures, 1 tabl
    corecore