5 research outputs found

    QCD on the Light-Front -- A Systematic Approach to Hadron Physics

    Full text link
    Light-Front Hamiltonian theory provides a rigorous frame-independent framework for solving nonperturbative QCD. The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schr\"odinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. Remarkably, the potential U has a unique form of a harmonic oscillator potential if one requires that the chiral QCD action remains conformally invariant. A mass gap arises when one extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory. The valence LF meson wavefunctions for zero quark mass satisfy a single-variable relativistic equation of motion in the invariant variable ζ2=b⊥2x(1−x)\zeta^2=b^2_\perp x(1-x), which is conjugate to the invariant mass squared. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. The corresponding light-front Dirac equation provides a model of nucleons. The same light-front equations arise from the holographic mapping of the soft-wall model modification of AdS_5 space with a unique dilaton profile to QCD (3+1) at fixed light-front time. Light-front holography thus provides a precise relation between amplitudes in the fifth dimension of AdS space and light-front wavefunctions. We also discuss the implications of the underlying conformal template of QCD for renormalization scale-setting, and the implications of light-front quantization for the value of the cosmological constant.Comment: Invited talk, presented by SJB at LightCone 2013+, May 20- May 24, 2013, Skiathos, Greece. arXiv admin note: text overlap with arXiv:1309.4856, arXiv:1308.5251, arXiv:1302.539

    Light-Front Holographic QCD and the Confinement Potential

    Full text link
    Light-Front Hamiltonian theory, derived from the quantization of the QCD Lagrangian at fixed light-front time \tau = t+z/c, provides a rigorous frame-independent framework for solving nonperturbative QCD. The eigenvalues of the light-front QCD Hamiltonian predict the hadronic mass spectrum, and the eigensolutions provide the light-front wavefunctions describing hadron structure. The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. The potential U has a unique form if one requires that the action for zero quark mass remains conformally invariant. The holographic mapping of gravity in AdS space to QCD with a specific soft-wall dilaton yields the same light-front Schrodinger equation. It also gives a precise relation between the bound-state amplitudes in the fifth dimension z of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The predictions include a zero-mass pion in the chiral limit, and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. The light-front AdS/QCD holographic approach thus gives a frame-independent representation of color-confining dynamics and the excitation spectra of light-quark hadrons in terms of a single mass parameter. We also discuss the implications of the underlying conformal template of QCD for renormalization scale-setting and the implications of light-front quantization for the value of the cosmological constant.Comment: Presented by SJB at Light-Cone 2012: Relativistic Hadronic and Particle Physics, 10 to 15 December, 2012 at the University of Delhi, New Delhi, Indi

    Conformal Symmetry, Confinement, and Light-Front Holographic QCD

    Get PDF
    We show that (a) the conformal properties of Anti-de Sitter (AdS) space, (b) the properties of a field theory in one dimension under the full conformal group found by de Alfaro, Fubini and Furlan, and (c) the frame-independent single-variable light-front Schr\"odinger equation for bound states all lead to the same result: a relativistic nonperturbative model which successfully incorporates salient features of hadronic physics, including confinement, linear Regge trajectories, and results which are conventionally attributed to spontaneous chiral symmetry breaking.Comment: Presented by SJB at the Third Workshop on the QCD Structure of the Nucleon (QCD-N'12), Bilbao, Spain, October 22-26, 2012. This work was supported by the Department of Energy contract DE--AC02--76SF0051

    ALICE technical design report of the zero degree calorimeter (ZDC)

    No full text

    ALICE Technical Design Report of the Dimuon Forward Spectrometer

    No full text
    corecore