9 research outputs found

    The VLBA Imaging and Polarimetry Survey at 5 GHz

    Get PDF
    We present the first results of the VLBA Imaging and Polarimetry Survey (VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through automated data reduction and imaging routines, we have produced publicly available I, Q, and U images and have detected polarized flux density from 37% of the sources. We have also developed an algorithm to use each source's I image to automatically classify it as a point-like source, a core-jet, a compact symmetric object (CSO) candidate, or a complex source. The mean ratio of the polarized to total 5 GHz flux density for VIPS sources with detected polarized flux density ranges from 1% to 20% with a median value of about 5%. We have also found significant evidence that the directions of the jets in core-jet systems tend to be perpendicular to the electric vector position angles (EVPAs). The data is consistent with a scenario in which ~24% of the polarized core-jets have EVPAs that are anti-aligned with the directions of their jet components and which have a substantial amount of Faraday rotation. In addition to these initial results, plans for future follow-up observations are discussed.Comment: 36 pages, 3 tables, 13 figures; accepted for publication in Ap

    MULTIPLE CHANGES IN CHROMATIN STRUCTURE PRECEDE THE TRANSCRIPTIONAL ACTIVATION OF THE HUMAN GROWTH-HORMONE LOCUS IN PLACENTAL CELLS

    Get PDF
    We report the discovery of a new gravitational lens system from the CLASS survey, CLASS B0631+519. VLA, MERLIN and VLBA observations show a doubly-imaged radio core, a doubly-imaged lobe and a second lobe that is probably quadruply-imaged. The maximum image separation is 1.16 arcseconds. The VLBA resolves the most magnified image of the flat-spectrum radio core into a number of sub-components spread across approximately 20 milli-arcseconds. Optical and near-infrared imaging with the ACS and NICMOS cameras on the HST show that there are two galaxies along the line of sight to the lensed source, as was previously discovered by optical spectroscopy. The nearer galaxy at z=0.0896 is a small blue irregular, while the more distant galaxy at z=0.6196 is an elliptical type and appears to contribute most of the lensing effect. The host galaxy of the lensed source is visible in NICMOS imaging as a set of arcs that form an almost complete Einstein ring. Mass modelling using non-parametric techniques can reproduce the ring and indicates that the irregular galaxy has a (localised) effect on the flux density distribution in the Einstein ring at the 5-10% level.Comment: 15 pages, 13 figures, accepted for publication in MNRA
    corecore