922 research outputs found
Navigation/traffic control satellite mission study. Volume 3 - System concepts
Satellite network for air traffic control, solar flare warning, and collision avoidanc
A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency
Single emitters have been considered as sources of single photons in various
contexts such as cryptography, quantum computation, spectroscopy, and
metrology. The success of these applications will crucially rely on the
efficient directional emission of photons into well-defined modes. To
accomplish a high efficiency, researchers have investigated microcavities at
cryogenic temperatures, photonic nanowires, and near-field coupling to metallic
nano-antennas. However, despite an impressive progress, the existing
realizations substantially fall short of unity collection efficiency. Here we
report on a theoretical and experimental study of a dielectric planar antenna,
which uses a layered structure for tailoring the angular emission of a single
oriented molecule. We demonstrate a collection efficiency of 96% using a
microscope objective at room temperature and obtain record detection rates of
about 50 MHz. Our scheme is wavelength-insensitive and can be readily extended
to other solid-state emitters such as color centers and semiconductor quantum
dots
Phase Transition between the Cholesteric and Twist Grain Boundary C Phases
The upper critical temperature Tc2 for the phase transition between the
Cholesteric phase (N*) and the Twist Grain Boundary C phase with the layer
inclination tilted to the pitch axis (TGBct) in thermotropic liquid crystals is
determined by the mean field Chen-Lubensky approach. We show that the N*-TGBct
phase transition is split in two with the appearance of either the TGBA or the
TGB2q phase in a narrow temperature interval below Tc2. The latter phase is
novel in being superposed from two degenerate
TGBct phases with different (left and right) layers inclinations to the pitch
axis.Comment: Phys. Rev. E, to be publ; 24 pages, RevTeX + 3 ps figure
Single-mode approximation and effective Chern-Simons theories for quantum Hall systems
A unified description of elementary and collective excitations in quantum
Hall systems is presented within the single-mode approximation (SMA) framework,
with emphasis on revealing an intimate link with Chern-Simons theories. It is
shown that for a wide class of quantum Hall systems the SMA in general yields,
as an effective theory, a variant of the bosonic Chern-Simons theory. For
single-layer systems the effective theory agrees with the standard Chern-Simons
theory at long wavelengths whereas substantial deviations arise for collective
excitations in bilayer systems. It is suggested, in particular, that Hall-drag
experiments would be a good place to detect out-of-phase collective excitations
inherent to bilayer systems. It is also shown that the intra-Landau-level modes
bear a similarity in structure (though not in scale) to the inter-Landau-level
modes, and its implications on the composite-fermion and composite-boson
theories are discussed.Comment: 9 pages, Revtex
Shifting the quantum Hall plateau level in a double layer electron system
We study the plateaux of the integer quantum Hall resistance in a bilayer
electron system in tilted magnetic fields. In a narrow range of tilt angles and
at certain magnetic fields, the plateau level deviates appreciably from the
quantized value with no dissipative transport emerging. A qualitative account
of the effect is given in terms of decoupling of the edge states corresponding
to different electron layers/Landau levels.Comment: 3 pages, 3 figures include
Electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling
The electromagnetic characteristics of bilayer quantum Hall systems in the
presence of interlayer coherence and tunneling are studied by means of a
pseudospin-texture effective theory and an algebraic framework of the
single-mode approximation, with emphasis on clarifying the nature of the
low-lying neutral collective mode responsible for interlayer tunneling
phenomena. A long-wavelength effective theory, consisting of the collective
mode as well as the cyclotron modes, is constructed. It is seen explicitly from
the electromagnetic response that gauge invariance is kept exact, this
implying, in particular, the absence of the Meissner effect in bilayer systems.
Special emphasis is placed on exploring the advantage of looking into quantum
Hall systems through their response; in particular, subtleties inherent to the
standard Chern-Simons theories are critically examined.Comment: 9 pages, Revtex, to appear in Phys. Rev.
Deliberating stratospheric aerosols for climate geoengineering and the SPICE project
Increasing concerns about the narrowing window for averting dangerous climate change have prompted calls for research into geoengineering, alongside dialogue with the public regarding this as a possible response. We report results of the first public engagement study to explore the ethics and acceptability of stratospheric aerosol technology and a proposed field trial (the Stratospheric Particle Injection for Climate Engineering (SPICE) âpipe and balloonâ test bed) of components for an aerosol deployment mechanism. Although almost all of our participants were willing to allow the field trial to proceed, very few were comfortable with using stratospheric aerosols. This Perspective also discusses how these findings were used in a responsible innovation process for the SPICE project initiated by the UKâs research councils
Band Gaps for Atoms in Light based Waveguides
The energy spectrum for a system of atoms in a periodic potential can exhibit
a gap in the band structure. We describe a system in which a laser is used to
produce a mechanical potential for the atoms, and a standing wave light field
is used to shift the atomic levels using the Autler-Townes effect, which
produces a periodic potential. The band structure for atoms guided by a hollow
optical fiber waveguide is calculated in three dimensions with quantised
external motion. The size of the band gap is controlled by the light guided by
the fiber. This variable band structure may allow the construction of devices
which can cool atoms. The major limitation on this device would be the
spontaneous emission losses.Comment: 7 pages, four postscript figures, uses revtex.sty, available through
http://online.anu.edu.au/Physics/papers/atom.htm
Guiding neutral atoms around curves with lithographically patterned current-carrying wires
Laser-cooled neutral atoms from a low-velocity atomic source are guided via a
magnetic field generated between two parallel wires on a glass substrate. The
atoms bend around three curves, each with a 15-cm radius of curvature, while
traveling along a 10-cm-long track. A maximum flux of 2*10^6 atoms/sec is
achieved with a current density of 3*10^4 A/cm^2 in the
100x100-micrometer-cross-section wires. The kinetic energy of the guided atoms
in one transverse dimension is measured to be 42 microKelvin.Comment: 9 page
Electromagnetic characteristics and effective gauge theory of double-layer quantum Hall systems
The electromagnetic characteristics of double-layer quantum Hall systems are
studied, with projection to the lowest Landau level taken into account and
intra-Landau-level collective excitations treated in the single-mode
approximation. It is pointed out that dipole-active excitations, both
elementary and collective, govern the long-wavelength features of quantum Hall
systems. In particular, the presence of the dipole-active interlayer
out-of-phase collective excitations, inherent to double-layer systems, modifies
the leading O(k) and O(k^{2}) long-wavelength characteristics (i.e., the
transport properties and characteristic scale) of the double-layer quantum Hall
states substantially. We apply bosonization techniques and construct from such
electromagnetic characteristics an effective theory, which consists of three
vector fields representing the three dipole-active modes, one interlayer
collective mode and two inter-Landau-level cyclotron modes. This effective
theory properly incorporates the spectrum of collective excitations on the
right scale of the Coulomb energy and, in addition, accommodates the favorable
transport properties of the standard Chern-Simons theories.Comment: 10 pages, Revtex, sec. II slightly shortened, to appear in Phys. Rev.
- âŠ