183 research outputs found
Electronic theory for superconductivity in SrRuO: triplet pairing due to spin-fluctuation exchange
Using a two-dimensional Hubbard Hamiltonian for the three electronic bands
crossing the Fermi level in SrRuO we calculate the band structure and
spin susceptibility in quantitative agreement with
nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS)
experiments. The susceptibility has two peaks at {\bf Q}
due to the nesting Fermi surface properties and at {\bf q}
due to the tendency towards ferromagnetism. Applying spin-fluctuation exchange
theory as in layered cuprates we determine from ,
electronic dispersions, and Fermi surface topology that superconductivity in
SrRuO consists of triplet pairing. Combining the Fermi surface topology
and the results for we can exclude and wave
symmetry for the superconducting order parameter. Furthermore, within our
analysis and approximations we find that -wave symmetry is slightly favored
over p-wave symmetry due to the nesting properties of the Fermi surface.Comment: 5 pages, 5 figures, misprints correcte
Spin-triplet superconductivity due to antiferromagnetic spin-fluctuation in Sr_2RuO_4
A mechanism leading to the spin-triplet superconductivity is proposed based
on the antiferromagnetic spin fluctuation. The effects of anisotropy in spin
fluctuation on the Cooper pairing and on the direction of d vector are examined
in the one-band Hubbard model with RPA approximation. The gap equations for the
anisotropic case are derived and applied to Sr_2RuO_4. It is found that a
nesting property of the Fermi surface together with the anisotropy leads to the
triplet superconductivity with the d=z(sin{k_x}\pm isin{k_y}), which is
consistent with experiments.Comment: 4 pages, 3 eps figures, revte
NEW CORRECTIONS OF ORDER AND TO THE LAMB SHIFT
Two corrections to the Lamb shift, induced by the polarization operator
insertions in the external photon lines are calculated.Comment: 4 pages, revtex, no figure
Ionization Potential of the Helium Atom
Ground state ionization potential of the He^4 atom is evaluated to be 5 945
204 221 (42) MHz. Along with lower order contributions, this result includes
all effects of the relative orders alpha^4, alpha^3*m_e/m_alpha and
alpha^5*ln^2(alpha).Comment: 4 page
Calculation of the Electron Self Energy for Low Nuclear Charge
We present a nonperturbative numerical evaluation of the one-photon electron
self energy for hydrogenlike ions with low nuclear charge numbers Z=1 to 5. Our
calculation for the 1S state has a numerical uncertainty of 0.8 Hz for hydrogen
and 13 Hz for singly-ionized helium. Resummation and convergence acceleration
techniques that reduce the computer time by about three orders of magnitude
were employed in the calculation. The numerical results are compared to results
based on known terms in the expansion of the self energy in powers of (Z
alpha).Comment: 10 pages, RevTeX, 2 figure
The Cold Big-Bang Cosmology as a Counter-example to Several Anthropic Arguments
A general Friedmann big-bang cosmology can be specified by fixing a
half-dozen cosmological parameters such as the photon-to-baryon ratio Eta, the
cosmological constant Lambda, the curvature scale R, and the amplitude Q of
(assumed scale-invariant) primordial density fluctuations. There is currently
no established theory as to why these parameters take the particular values we
deduce from observations. This has led to proposed `anthropic' explanations for
the observed value of each parameter, as the only value capable of generating a
universe that can host intelligent life. In this paper, I explicitly show that
the requirement that the universe generates sun-like stars with planets does
not fix these parameters, by developing a class of cosmologies (based on the
classical `cold big-bang' model) in which some or all of the cosmological
parameters differ by orders of magnitude from the values they assume in the
standard hot big-bang cosmology, without precluding in any obvious way the
existence of intelligent life. I also give a careful discussion of the
structure and context of anthropic arguments in cosmology, and point out some
implications of the cold big-bang model's existence for anthropic arguments
concerning specific parameters.Comment: 13 PRD-style pages, 2 postscript figures. Reference 26 corrected.
Accepted to Phys. Rev.
Scale-dependent Galaxy Bias
We present a simple heuristic model to demonstrate how feedback related to
the galaxy formation process can result in a scale-dependent bias of mass
versus light, even on very large scales. The model invokes the idea that
galaxies form initially in locations determined by the local density field, but
the subsequent formation of galaxies is also influenced by the presence of
nearby galaxies that have already formed. The form of bias that results
possesses some features that are usually described in terms of stochastic
effects, but our model is entirely deterministic once the density field is
specified. Features in the large-scale galaxy power spectrum (such as wiggles
that might in an extreme case mimic the effect of baryons on the primordial
transfer function) could, at least in principle, arise from spatial modulations
of the galaxy formation process that arise naturally in our model. We also show
how this fully deterministic model gives rise to apparently stochasticity in
the galaxy distribution.Comment: 14 pages, 2 figures, typos corrected, discussion added and references
corrected; matches version accepted by JCA
Electron Self Energy for the K and L Shell at Low Nuclear Charge
A nonperturbative numerical evaluation of the one-photon electron self energy
for the K- and L-shell states of hydrogenlike ions with nuclear charge numbers
Z=1 to 5 is described. Our calculation for the 1S state has a numerical
uncertainty of 0.8 Hz in atomic hydrogen, and for the L-shell states (2S and
2P) the numerical uncertainty is 1.0 Hz. The method of evaluation for the
ground state and for the excited states is described in detail. The numerical
results are compared to results based on known terms in the expansion of the
self energy in powers of (Z alpha).Comment: 21 pages, RevTeX, 5 Tables, 6 figure
Arbitrary Choice of Basic Variables in Density Functional Theory. II. Illustrative Applications
Our recent theory (Ref. 1) enables us to choose arbitrary quantities as the
basic variables of the density functional theory. In this paper we apply it to
several cases. In the case where the occupation matrix of localized orbitals is
chosen as a basic variable, we can obtain the single-particle equation which is
equivalent to that of the LDA+U method. The theory also leads to the
Hartree-Fock-Kohn-Sham equation by letting the exchange energy be a basic
variable. Furthermore, if the quantity associated with the density of states
near the Fermi level is chosen as a basic variable, the resulting
single-particle equation includes the additional potential which could mainly
modify the energy-band structures near the Fermi level.Comment: 27 page
The dynamical Green's function and an exact optical potential for electron-molecule scattering including nuclear dynamics
We derive a rigorous optical potential for electron-molecule scattering
including the effects of nuclear dynamics by extending the common many-body
Green's function approach to optical potentials beyond the fixed-nuclei limit
for molecular targets. Our formalism treats the projectile electron and the
nuclear motion of the target molecule on the same footing whereby the dynamical
optical potential rigorously accounts for the complex many-body nature of the
scattering target. One central result of the present work is that the common
fixed-nuclei optical potential is a valid adiabatic approximation to the
dynamical optical potential even when projectile and nuclear motion are
(nonadiabatically) coupled as long as the scattering energy is well below the
electronic excitation thresholds of the target. For extremely low projectile
velocities, however, when the cross sections are most sensitive to the
scattering potential, we expect the influences of the nuclear dynamics on the
optical potential to become relevant. For these cases, a systematic way to
improve the adiabatic approximation to the dynamical optical potential is
presented that yields non-local operators with respect to the nuclear
coordinates.Comment: 22 pages, no figures, accepted for publ., Phys. Rev.
- …