1,799 research outputs found

    Utilizing National Agriculture Imagery Program Data to Estimate Tree Cover and Biomass of Piñon and Juniper Woodlands

    Get PDF
    With the encroachment of piñon (Pinus ssp.) and juniper (Juniperus ssp.) woodlands onto sagebrush steppe rangelands, there is an increasing interest in rapid, accurate, and inexpensive quantification methods to estimate tree canopy cover and aboveground biomass. The objectives of this study were 1) to evaluate the relationship and agreement of piñon and juniper (P-J) canopy cover estimates, using object-based image analysis (OBIA) techniques and National Agriculture Imagery Program (NAIP, 1-m pixel resolution) imagery with ground measurements, and 2) to investigate the relationship between remotely-sensed P-J canopy cover and ground-measured aboveground biomass. For the OBIA, we used eCognition® Developer 8.8 software to extract tree canopy cover from NAIP imagery across 12 P-J woodlands within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) network. The P-J woodlands were categorized based on the dominant tree species found at the individual sites for the analysis (western juniper, Utah juniper, and mixed P-J community). Following tree canopy cover extractions, relationships were assessed between remotely-sensed canopy cover and ground-measured aboveground biomass. Our OBIA estimates for P-J canopy cover were highly correlated with ground-measured tree canopy cover (averaged across all regions r = 0.92). However, differences between methods occurred for western and Utah juniper sites (P \u3c 0.05), and were more prominent where tree canopy cover was \u3e 40%. There were high degrees of correlation between predicted aboveground biomass estimates with the use of remotely-sensed tree canopy cover and ground-measured aboveground biomass (averaged across all regions r = 0.89). Our results suggest that OBIA methods combined with NAIP imagery can provide land managers with quantitative data that can be used to evaluate P-J woodland cover and aboveground biomass rapidly, on broad scales. Although some accuracy and precision may be lost when utilizing aerial imagery to identify P-J canopy cover and aboveground biomass, it is a reasonable alternative to ground monitoring and inventory practices

    Uniqueness and non-uniqueness of static vacuum black holes in higher dimensions

    Get PDF
    We prove the uniqueness theorem for asymptotically flat static vacuum black hole solutions in higher dimensional space-times. We also construct infinitely many non-asymptotically flat regular static black holes on the same spacetime manifold with the same spherical topology.Comment: to appear in Progress of Theoretical Physics Supplement No. 14

    Towards the classification of static vacuum spacetimes with negative cosmological constant

    Get PDF
    We present a systematic study of static solutions of the vacuum Einstein equations with negative cosmological constant which asymptotically approach the generalized Kottler (``Schwarzschild--anti-de Sitter'') solution, within (mainly) a conformal framework. We show connectedness of conformal infinity for appropriately regular such space-times. We give an explicit expression for the Hamiltonian mass of the (not necessarily static) metrics within the class considered; in the static case we show that they have a finite and well defined Hawking mass. We prove inequalities relating the mass and the horizon area of the (static) metrics considered to those of appropriate reference generalized Kottler metrics. Those inequalities yield an inequality which is opposite to the conjectured generalized Penrose inequality. They can thus be used to prove a uniqueness theorem for the generalized Kottler black holes if the generalized Penrose inequality can be established.Comment: the discussion of our results includes now some solutions of Horowitz and Myers; typos corrected here and there; a shortened version of this version will appear in Journal of Mathematical Physic

    Uniqueness Theorem for Static Black Hole Solutions of sigma-models in Higher Dimensions

    Full text link
    We prove the uniqueness theorem for self-gravitating non-linear sigma-models in higher dimensional spacetime. Applying the positive mass theorem we show that Schwarzschild-Tagherlini spacetime is the only maximally extended, static asymptotically flat solution with non-rotating regular event horizon with a constant mapping.Comment: 5 peges, Revtex, to be published in Class.Quantum Gra

    Uniqueness properties of the Kerr metric

    Get PDF
    We obtain a geometrical condition on vacuum, stationary, asymptotically flat spacetimes which is necessary and sufficient for the spacetime to be locally isometric to Kerr. Namely, we prove a theorem stating that an asymptotically flat, stationary, vacuum spacetime such that the so-called Killing form is an eigenvector of the self-dual Weyl tensor must be locally isometric to Kerr. Asymptotic flatness is a fundamental hypothesis of the theorem, as we demonstrate by writing down the family of metrics obtained when this requirement is dropped. This result indicates why the Kerr metric plays such an important role in general relativity. It may also be of interest in order to extend the uniqueness theorems of black holes to the non-connected and to the non-analytic case.Comment: 30 pages, LaTeX, submitted to Classical and Quantum Gravit

    A Mass Bound for Spherically Symmetric Black Hole Spacetimes

    Get PDF
    Requiring that the matter fields are subject to the dominant energy condition, we establish the lower bound (4π)1κA(4\pi)^{-1} \kappa {\cal A} for the total mass MM of a static, spherically symmetric black hole spacetime. (A{\cal A} and κ\kappa denote the area and the surface gravity of the horizon, respectively.) Together with the fact that the Komar integral provides a simple relation between M(4π)1κAM - (4\pi)^{-1} \kappa A and the strong energy condition, this enables us to prove that the Schwarzschild metric represents the only static, spherically symmetric black hole solution of a selfgravitating matter model satisfying the dominant, but violating the strong energy condition for the timelike Killing field KK at every point, that is, R(K,K)0R(K,K) \leq 0. Applying this result to scalar fields, we recover the fact that the only black hole configuration of the spherically symmetric Einstein-Higgs model with arbitrary non-negative potential is the Schwarzschild spacetime with constant Higgs field. In the presence of electromagnetic fields, we also derive a stronger bound for the total mass, involving the electromagnetic potentials and charges. Again, this estimate provides a simple tool to prove a ``no-hair'' theorem for matter fields violating the strong energy condition.Comment: 16 pages, LATEX, no figure

    Black hole uniqueness theorems and new thermodynamic identities in eleven dimensional supergravity

    Full text link
    We consider stationary, non-extremal black holes in 11-dimensional supergravity having isometry group R×U(1)8\mathbb{R} \times U(1)^8. We prove that such a black hole is uniquely specified by its angular momenta, its electric charges associated with the various 7-cycles in the manifold, together with certain moduli and vector valued winding numbers characterizing the topological nature of the spacetime and group action. We furthermore establish interesting, non-trivial, relations between the thermodynamic quantities associated with the black hole. These relations are shown to be a consequence of the hidden E8(+8)E_{8(+8)} symmetry in this sector of the solution space, and are distinct from the usual "Smarr-type" formulas that can be derived from the first law of black hole mechanics. We also derive the "physical process" version of this first law applicable to a general stationary black hole spacetime without any symmetry assumptions other than stationarity, allowing in particular arbitrary horizon topologies. The work terms in the first law exhibit the topology of the horizon via the intersection numbers between cycles of various dimensions.Comment: 50pp, 3 figures, v2: references added, correction in appendix B, conclusions added, v3: reference section edited, typos removed, minor changes in appendix

    THE UNIQUENESS THEOREM FOR ROTATING BLACK HOLE SOLUTIONS OF SELF-GRAVITATING HARMONIC MAPPINGS

    Get PDF
    We consider rotating black hole configurations of self-gravitating maps from spacetime into arbitrary Riemannian manifolds. We first establish the integrability conditions for the Killing fields generating the stationary and the axisymmetric isometry (circularity theorem). Restricting ourselves to mappings with harmonic action, we subsequently prove that the only stationary and axisymmetric, asymptotically flat black hole solution with regular event horizon is the Kerr metric. Together with the uniqueness result for non-rotating configurations and the strong rigidity theorem, this establishes the uniqueness of the Kerr family amongst all stationary black hole solutions of self-gravitating harmonic mappings.Comment: 18 pages, latex, no figure
    corecore