12,713 research outputs found

    Electron Dynamics Controlled via Radiation Reaction

    Get PDF
    If a charge is hit by a superstrong laser pulse, such as those that can be created with state-of-the-art laser technology, it experiences an extreme acceleration causing the motion of the charge to be strongly affected by its own emission of radiation. In classical electrodynamics this effect can be taken into account by adding a new force term (also called radiation reaction) to the equation of motion of the charge in addition to the Lorentz force. Here we show how the radiation reaction force can be used to control the deflection of a relativistic beam of electrons colliding headon with a plane-wave laser pulse as well as in the head-on and oblique incidence collision with a tightly focused laser pulse. In addition, strong-field QED effects are also considered by correcting the classical radiation reaction force with a quantum factor, leading to a semiclassical treatment. All of this is done by performing analytic calculations and by numerical integration with a fourth order Runge-Kutta method, which is tested against the analytic result of the plane wave case

    Permutation branes and linear matrix factorisations

    Full text link
    All the known rational boundary states for Gepner models can be regarded as permutation branes. On general grounds, one expects that topological branes in Gepner models can be encoded as matrix factorisations of the corresponding Landau-Ginzburg potentials. In this paper we identify the matrix factorisations associated to arbitrary B-type permutation branes.Comment: 43 pages. v2: References adde

    A Definitive Optical Detection of a Supercluster at z = 0.91

    Get PDF
    We present the results from a multi-band optical imaging program which has definitively confirmed the existence of a supercluster at z = 0.91. Two massive clusters of galaxies, CL1604+4304 at z = 0.897 and CL1604+4321 at z = 0.924, were originally observed in the high-redshift cluster survey of Oke, Postman & Lubin (1998). They are separated by 4300 km/s in radial velocity and 17 arcminutes on the plane of the sky. Their physical and redshift proximity suggested a promising supercluster candidate. Deep BRi imaging of the region between the two clusters indicates a large population of red galaxies. This population forms a tight, red sequence in the color--magnitude diagram at (R-i) = 1.4. The characteristic color is identical to that of the spectroscopically-confirmed early-type galaxies in the two member clusters. The red galaxies are spread throughout the 5 Mpc region between CL1604+4304 and CL1604+4321. Their spatial distribution delineates the entire large scale structure with high concentrations at the cluster centers. In addition, we detect a significant overdensity of red galaxies directly between CL1604+4304 and CL1604+4321 which is the signature of a third, rich cluster associated with this system. The strong sequence of red galaxies and their spatial distribution clearly indicate that we have discovered a supercluster at z = 0.91.Comment: Accepted for publication in Astrophysical Journal Letters. 13 pages, including 5 figure

    A Dynamic Single E-Beam Short/Open Testing Technique

    Get PDF
    Several electron beam techniques for electrical testing of interconnection modules have been presented by different authors in recent years. Most techniques use two or more electron beam energies to establish a charging and a non-loading reading mode. The present paper discusses the feasibility of employing the same beam energy for charging contact pads and reading pad potentials. This avoids the necessity of high voltage switching as used for altering the beam energy. A switching time of 100 us between 2 kV and 4 kV beam voltage which is restricted to this range has been reported earlier. Without switching, higher beam energies may be used with smaller transition times between charging and reading of the test pads

    Comparison between mirror Langmuir probe and gas puff imaging measurements of intermittent fluctuations in the Alcator C-Mod scrape-off layer

    Get PDF
    Statistical properties of the scrape-off layer (SOL) plasma fluctuations are studied in ohmically heated plasmas in the Alcator C-Mod tokamak. For the first time, plasma fluctuations as well as parameters that describe the fluctuations are compared across measurements from a mirror Langmuir probe (MLP) and from gas-puff imaging (GPI) that sample the same plasma discharge. This comparison is complemented by an analysis of line emission time-series data, synthesized from the MLP electron density and temperature measurements. The fluctuations observed by the MLP and GPI typically display relative fluctuation amplitudes of order unity together with positively skewed and flattened probability density functions. Such data time series are well described by an established stochastic framework which model the data as a superposition of uncorrelated, two-sided exponential pulses. The most important parameter of the process is the intermittency parameter, {\gamma} = {\tau}d / {\tau}w where {\tau}d denotes the duration time of a single pulse and {\tau}w gives the average waiting time between consecutive pulses. Here we show, using a new deconvolution method, that these parameters can be consistently estimated from different statistics of the data. We also show that the statistical properties of the data sampled by the MLP and GPI diagnostic are very similar. Finally, a comparison of the GPI signal to the synthetic line-emission time series suggests that the measured emission intensity can not be explained solely by a simplified model which neglects neutral particle dynamics

    Can one see entanglement ?

    Get PDF
    The human eye can detect optical signals containing only a few photons. We investigate the possibility to demonstrate entanglement with such biological detectors. While one person could not detect entanglement by simply observing photons, we discuss the possibility for several observers to demonstrate entanglement in a Bell-type experiment, in which standard detectors are replaced by human eyes. Using a toy model for biological detectors that captures their main characteristic, namely a detection threshold, we show that Bell inequalities can be violated, thus demonstrating entanglement. Remarkably, when the response function of the detector is close to a step function, quantum non-locality can be demonstrated without any further assumptions. For smoother response functions, as for the human eye, post-selection is required.Comment: 5 pages, 5 figure

    D-brane superpotentials and RG flows on the quintic

    Full text link
    The behaviour of D2-branes on the quintic under complex structure deformations is analysed by combining Landau-Ginzburg techniques with methods from conformal field theory. It is shown that the boundary renormalisation group flow induced by the bulk deformations is realised as a gradient flow of the effective space time superpotential which is calculated explicitly to all orders in the boundary coupling constant.Comment: 24 pages, 1 figure, v2:Typo in (3.14) correcte
    • …
    corecore