17,547 research outputs found
Non-resonant microwave absorption studies of superconducting MgB_2
Non-resonant microwave absorption(NRMA) studies of superconducting MgB_2 at a
frequency of 9.43 GHz in the field range -50 Gauss to 5000 Gauss are reported.
The NRMA results indicate near absence of intergranular weak links. A linear
temperature dependence of the lower critical field H_c1 is observed indicating
a non s-wave superconductivity. However, the phase reversal of the NRMA signal
which could suggest d-wave symmetry is also not observed.Comment: 8 pages, 2 figure
Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines
We propose a class of electrical circuits for extremely wideband (EWB) signal shaping. A one-dimensional, nonlinear, nonuniform transmission line is proposed for narrow pulse generation. A two-dimensional transmission lattice is proposed for EWB signal combining. Model equations for the circuits are derived. Theoretical and numerical solutions of the model equations are presented, showing that the circuits can be used for the desired application. The procedure by which the circuits are designed exemplifies a modern, mathematical design methodology for EWB circuits
Martensite-like transition and spin-glass behavior in nanocrystalline Pr0.5Ca0.5MnO3
We report on isothermal pulsed (20 ms) field magnetization, temperature
dependent AC - susceptibility, and the static low magnetic field measurements
carried out on 10 nm sized Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). The
saturation field for the magnetization of PCMO10 (~ 250 kOe) is found to be
reduced in comparison with that of bulk PCMO (~300 kOe). With increasing
temperature, the critical magnetic field required to 'melt' the residual
charge-ordered phase decays exponentially while the field transition range
broadens, which is indicative of a Martensite-like transition. The AC -
susceptibility data indicate the presence of a frequency-dependent freezing
temperature, satisfying the conventional Vogel-Fulcher and power laws, pointing
to the existence of a spin-glass-like disordered magnetic phase. The present
results lead to a better understanding of manganite physics and might prove
helpful for practical applications
- …