6,677 research outputs found
Sport is king: an investigation into local media coverage of women's sport in the UK East Midlands
There has been a recent interest in research into national media coverage of female sport, particularly single events, but on-going sporting activities by women are rarely reported. This paper attempts to examine this subject at the local level, looking in general at womenâs sport and in particular at womenâs football in the East Midlands region of the UK. Quantitative methods were used to survey local newspapers and radio stations and interviews were carried out with a range of people relevant to the field of study. The topic of sports media is framed here with reference to research into masculinities and a socialist feminist approach is used to address problems. The data showed there was a significant and on-going imbalance in the amount of coverage and even some signs of a decline in womenâs football reporting, in spite of a national resurgence of the sport itself. The authors try to account for this and suggest further areas of future study
XMM-Newton observations of the Seyfert 1 AGN H0557-385
We present XMM-Newton observations of the Seyfert 1 AGN H0557-385. We have
conducted a study into the warm absorber present in this source, and using
high-resolution RGS data we find that the absorption can be characterised by
two phases: a phase with log ionisation parameter xi of 0.50 (where xi is in
units of ergs cm/s) and a column of 0.2e21 cm^-2, and a phase with log xi of
1.62 and a column of 1.3e22 cm^-2. An iron K alpha line is detected. Neutral
absorption is also present in the source, and we discuss possible origins for
this. On the assumption that the ionised absorbers originate as an outflow from
the inner edge of the torus, we use a new method for finding the volume filling
factor. Both phases of H0557-385 have small volume filling factors (< 1%). We
also derive the volume filling factors for a sample of 23 AGN using this
assumption and for the absorbers with log xi > 0.7 we find reasonable agreement
with the filling factors obtained through the alternative method of equating
the momentum flow of the absorbers to the momentum loss of the radiation field.
By comparing the filling factors obtained by the two methods, we infer that
some absorbers with log xi < 0.7 occur at significantly larger distances from
the nucleus than the inner edge of the torus.Comment: Accepted for publication in MNRA
Interplay between function and structure in complex networks
We show that abrupt structural transitions can arise in functionally optimal
networks, driven by small changes in the level of transport congestion. Our
results offer an explanation as to why so many diverse species of network
structure arise in Nature (e.g. fungal systems) under essentially the same
environmental conditions. Our findings are based on an exactly solvable model
system which mimics a variety of biological and social networks. We then extend
our analysis by introducing a novel renormalization scheme involving cost
motifs, to describe analytically the average shortest path across
multiple-ring-and-hub networks. As a consequence, we uncover a 'skin effect'
whereby the structure of the inner multi-ring core can cease to play any role
in terms of determining the average shortest path across the network.Comment: Expanded version of physics/0508228 with additional new result
Generalized dipole correction for charged surfaces in the repeated-slab approach
First-principles calculations of surfaces or two-dimensional materials with a finite surface charge invariably include an implicit or explicit compensating countercharge. We show that an ideal constant-charge counterelectrode in the vacuum region can be introduced by means of a simple correction to the electrostatic potential in close analogy to the well-known dipole correction for charge-neutral asymmetric slabs. Our generalized dipole correction accounts simultaneously for the sheet-charge electrode and the huge voltage built up between the system of interest and the counterelectrode. We demonstrate its usefulness for two prototypical cases, namely, field evaporation in the presence of huge electric fields (20 V/nm) and the modeling of charged defects at an insulator surface. We also introduce algorithmic improvements to charge initialization and preconditioning in the density functional theory algorithm that proved crucial for ensuring rapid convergence in slab systems with high electric fields
Treatment and outcomes in necrotising autoimmune myopathy: an australian perspective
Necrotising Autoimmune Myopathy (NAM) presents as a subacute proximal myopathy with high creatine kinase levels. It is associated with statin exposure, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) antibody, connective tissue diseases, signal recognition particle (SRP) antibody and malignancy. This case series presents our Western Australian NAM patient cohort: comparing the subgroup presentations, biopsy appearance and treatment outcomes. We retrospectively collected data on patients diagnosed with NAM at the Western Australian Neuroscience Research Institute between the years 2000 and 2015. We identified 20 patients with Necrotising Autoimmune Myopathy: 14 with anti-HMGCR antibodies; two with anti-SRP antibodies; three with connective tissue disease; two as yet unspecified. Median creatine kinase level was 6047units/L (range 1000â17000). The statin naĂŻve patients with HMGCR antibodies and patients with SRP antibodies were the most severely affected subgroups, with higher creatine kinase levels, and were more resistant to immunotherapy. Two or more immunotherapy agents were required in 90%; eight patients required IVIG and rituximab. Steroid weaning commonly precipitated relapses. Four patients had complete remission, and the remaining patients still require immunotherapy. Necrotising Autoimmune Myopathy is a potentially treatable myopathy, which can be precipitated by statin therapy and requires early, aggressive immunotherapy, usually requiring multiple steroid sparing agents for successful steroid weaning
Multistability of free spontaneously-curved anisotropic strips
Multistable structures are objects with more than one stable conformation,
exemplified by the simple switch. Continuum versions are often elastic
composite plates or shells, such as the common measuring tape or the slap
bracelet, both of which exhibit two stable configurations: rolled and unrolled.
Here we consider the energy landscape of a general class of multistable
anisotropic strips with spontaneous Gaussian curvature. We show that while
strips with non-zero Gaussian curvature can be bistable, strips with positive
spontaneous curvature are always bistable, independent of the elastic moduli,
strips of spontaneous negative curvature are bistable only in the presence of
spontaneous twist and when certain conditions on the relative stiffness of the
strip in tension and shear are satisfied. Furthermore, anisotropic strips can
become tristable when their bending rigidity is small. Our study complements
and extends the theory of multistability in anisotropic shells and suggests new
design criteria for these structures.Comment: 20 pages, 10 figure
Fast Simulation of Facilitated Spin Models
We show how to apply the absorbing Markov chain Monte Carlo algorithm of
Novotny to simulate kinetically constrained models of glasses. We consider in
detail one-spin facilitated models, such as the East model and its
generalizations to arbitrary dimensions. We investigate how to maximise the
efficiency of the algorithms, and show that simulation times can be improved on
standard continuous time Monte Carlo by several orders of magnitude. We
illustrate the method with equilibrium and aging results. These include a study
of relaxation times in the East model for dimensions d=1 to d=13, which
provides further evidence that the hierarchical relaxation in this model is
present in all dimensions. We discuss how the method can be applied to other
kinetically constrained models.Comment: 8 pages, 4 figure
Using cardiorespiratory fitness assessment to identify pathophysiology in long COVID â Best practice approaches
Cardio-respiratory fitness (CRF) is well-established in the clinical domains as an integrative measure of the body's physiological capability and capacity to transport and utilise oxygen during controlled bouts of physical exertion. Long COVID is associated with >200 different symptoms and is estimated to affect âŒ150 million people worldwide. The most widely reported impact is reduced quality of life and functional status due to highly sensitive and cyclical symptoms that manifest and are augmented following exposure to physical, emotional, orthostatic, and cognitive stimuli, more commonly known as post-exertional symptom exacerbation (PESE) which prevents millions from engaging in routine daily activities. The use of cardiopulmonary exercise testing (CPET) is commonplace in the assessment of integrated physiology; CPET will undoubtedly play an integral role in furthering the pathophysiology and mechanistic knowledge that will inform bespoke Long COVID treatment and management strategies. An inherent risk of previous attempts to utilise CPET protocols in patients with chronic disease is that these are compounded by PESE and have induced a worsening of symptoms for patients that can last for days or weeks. To do this effectively and to meet the global need, the complex multi-system pathophysiology of Long COVID must be considered to ensure the design and implementation of research that is both safe for participants and capable of advancing mechanistic understanding
Recommended from our members
British research in accounting and finance (2001â2007): the 2008 research assessment exercise
No abstract available
- âŠ