3,513 research outputs found

    A Renormalisation Approach to Effective Interactions in Hilbert Space

    Get PDF
    The low-lying bound states of a microscopic quantum many-body system of nn particles and the related physical observables can be worked out in a truncated nn--particle Hilbert space. We present here a non-perturbative analysis of this problem which relies on a renormalisation concept and work out the link with perturbative approaches.Comment: 5 pages, no figures, LateX fil

    Is binary sequential decay compatible with the fragmentation of nuclei at high energy?

    Get PDF
    We use a binary sequential decay model in order to describe the fragmentation of a nucleus induced by the high energy collisions of protons with Au nuclei. Overall agreement between measured and calculated physical observables is obtained. We evaluate and analyse the decay times obtained with two different parametrisations of the decay rates and discuss the applicability of the model to high energy fragmentation.Comment: 6 pages, 4 eps figures. Small changes at the end of the text. More arguments are given in the discussion of the time scale of the proces

    Microscopic systems with and without Coulomb interaction, fragmentation and phase transitions in finite nuclei

    Get PDF
    We test the influence of the Coulomb interaction on the thermodynamic and cluster generation properties of a system of classical particles described by different lattice models. Numerical simulations show that the Coulomb interaction produces essentially a shift in temperature of quantities like the specific heat but not qualitative changes. We also consider a cellular model. The thermodynamic properties of the system are qualitatively unaltered.Comment: 8 pages, 9 figures. New comments concerning the effect of the Coulomb interaction on the caloric curve. Justification of the criterion which defines bound clusters. Further comments about the identification of the order of the transition. To be published in Eur. Phys. J.

    Fluctuating Topological Defects in 2D Liquids: Heterogeneous Motion and Noise

    Full text link
    We measure the defect density as a function of time at different temperatures in simulations of a two dimensional system of interacting particles. Just above the solid to liquid transition temperature, the power spectrum of the defect fluctuations shows a 1/f signature, which crosses over to a white noise signature at higher temperatures. When 1/f noise is present, the 5-7 defects predominately form string like structures, and the particle trajectories show a 1D correlated motion that follows the defect strings. At higher temperatures this heterogeneous motion is lost. We demonstrate this heterogeneity both in systems interacting with a short ranged screened Coulomb interaction, as well as in systems with a long range logarithmic interaction between the particles.Comment: 4 pages, 5 postscript figure

    The interplay between radiation pressure and the photoelectric instability in optically thin disks of gas and dust

    Get PDF
    Previous theoretical works have shown that in optically thin disks, dust grains are photoelectrically stripped of electrons by starlight, heating nearby gas and possibly creating a dust clumping instability, the photoelectric instability (PeI), that significantly alters global disk structure. In the current work, we use the Pencil Code to perform the first numerical models of the PeI that include stellar radiation pressure on dust grains in order to explore the parameter regime in which the instability operates. In models with gas surface densities greater than \sim104 g cm210^{-4}~\mathrm{g}~\mathrm{cm}^{-2}, we see a variety of dust structures, including sharp concentric rings and non-axisymmetric arcs and clumps that represent dust surface density enhancements of factors of \sim5205-20 depending on the run parameters. The gas distributions show various structures as well, including clumps and arcs formed from spiral arms. In models with lower gas surface densities, vortices and smooth spiral arms form in the gas distribution, but the dust is too weakly coupled to the gas to be significantly perturbed. In one high gas surface density model, we include a large, low-order gas viscosity, and, in agreement with previous radiation pressure-free models, find that it observably smooths the structures that form in the gas and dust, suggesting that resolved images of a given disk may be useful for deriving constraints on the effective viscosity of its gas. Broadly, our models show that radiation pressure does not preclude the formation of complex structure from the PeI, but the qualitative manifestation of the PeI depends strongly on the parameters of the system. The PeI may provide an explanation for unusual disk morphologies such as the moving blobs of the AU Mic disk, the asymmetric dust distribution of the 49 Ceti disk, and the rings and arcs found in the disk around HD 141569A.Comment: 13 pages, 13 figures; submitted to Ap

    Phase space characteristics of fragmenting nuclei described as excited disordered systems

    Get PDF
    We investigate the thermodynamical content of a cellular model which describes nuclear fragmentation as a process taking place in an excited disordered system. The model which reproduces very well the size distribution of fragments does not show the existence of a first order phase transition.Comment: 14 pages, TeX type, 7 figure

    Kinetic Heterogeneities at Dynamical Crossovers

    Full text link
    We perform molecular dynamics simulations of a model glass-forming liquid to measure the size of kinetic heterogeneities, using a dynamic susceptibility χss(a,t)\chi_{\rm ss}(a, t) that quantifies the number of particles whose dynamics are correlated on the length scale aa and time scale tt. By measuring χss(a,t)\chi_{\rm ss}(a, t) as a function of both aa and tt, we locate local maxima χ\chi^\star at distances aa^\star and times tt^\star. Near the dynamical glass transition, we find two types of maxima, both correlated with crossovers in the dynamical behavior: a smaller maximum corresponding to the crossover from ballistic to sub-diffusive motion, and a larger maximum corresponding to the crossover from sub-diffusive to diffusive motion. Our results indicate that kinetic heterogeneities are not necessarily signatures of an impending glass or jamming transition.Comment: 6 pages, 4 figure

    On shocks driven by high-mass planets in radiatively inefficient disks. I. Two-dimensional global disk simulations

    Get PDF
    Recent observations of gaps and non-axisymmetric features in the dust distributions of transition disks have been interpreted as evidence of embedded massive protoplanets. However, comparing the predictions of planet-disk interaction models to the observed features has shown far from perfect agreement. This may be due to the strong approximations used for the predictions. For example, spiral arm fitting typically uses results that are based on low-mass planets in an isothermal gas. In this work, we describe two-dimensional, global, hydrodynamical simulations of disks with embedded protoplanets, with and without the assumption of local isothermality, for a range of planet-to-star mass ratios 1-10 M_jup for a 1 M_sun star. We use the Pencil Code in polar coordinates for our models. We find that the inner and outer spiral wakes of massive protoplanets (M>5 M_jup) produce significant shock heating that can trigger buoyant instabilities. These drive sustained turbulence throughout the disk when they occur. The strength of this effect depends strongly on the mass of the planet and the thermal relaxation timescale; for a 10 M_jup planet embedded in a thin, purely adiabatic disk, the spirals, gaps, and vortices typically associated with planet-disk interactions are disrupted. We find that the effect is only weakly dependent on the initial radial temperature profile. The spirals that form in disks heated by the effects we have described may fit the spiral structures observed in transition disks better than the spirals predicted by linear isothermal theory.Comment: 10 pages, 8 figures. ApJ, accepte
    corecore