2,427 research outputs found
A comparison of freezing-damage during isochoric and isobaric freezing of the potato.
BACKGROUND:Freezing is commonly used for food preservation. It is usually done under constant atmospheric pressure (isobaric). While extending the life of the produce, isobaric freezing has detrimental effects. It causes loss of food weight and changes in food quality. Using thermodynamic analysis, we have developed a theoretical model of the process of freezing in a constant volume system (isochoric). The mathematical model suggests that the detrimental effects associated with isobaric freezing may be reduced in an isochoric freezing system. To explore this hypothesis, we performed a preliminary study on the isochoric freezing of a produce with which our group has experience, the potato. METHOD:Experiments were performed in an isochoric freezing device we designed. The device is robust and has no moving parts. For comparison, we used a geometrically identical isobaric freezing device. Following freezing and thawing, the samples were weighed, examined with colorimetry, and examined with microscopy. RESULTS:It was found that potatoes frozen to -5 °C in an isochoric system experienced no weight loss and limited enzymatic browning. In contrast the -5 °C isobaric frozen potato experienced substantial weight loss and substantial enzymatic browning. Microscopic analysis shows that the structural integrity of the potato is maintained after freezing in the isochoric system and impaired after freezing in the isobaric system. DISCUSSION:Tissue damage during isobaric freezing is caused by the increase in extracellular osmolality and the mechanical damage by ice crystals. Our thermodynamic analysis predicts that during isochoric freezing the intracellular osmolality remains comparable to the extracellular osmolality and that isochoric systems can be designed to eliminate the mechanical damage by ice. The results of this preliminary study seem to confirm the theoretical predictions. CONCLUSION:This is a preliminary exploratory study on isochoric freezing of food. We have shown that the quality of a food product preserved by isochoric freezing is better than the quality of food preserved to the same temperature in isobaric conditions. Obviously, more extensive research remains to be done to extend this study to lower freezing temperatures and other food items
Pressure in isochoric systems containing aqueous solutions at subzero Centigrade temperatures.
ObjectivePreservation of biological materials at subzero Centigrade temperatures, cryopreservation, is important for the field of tissue engineering and organ transplantation. Our group is studying the use of isochoric (constant volume) systems of aqueous solution for cryopreservation. Previous studies measured the pressure-temperature relations in aqueous isochoric systems in the temperature range from 0°C to - 20°C. The goal of this study is to expand the pressure-temperature measurement beyond the range reported in previous publications.Materials and methodsTo expand the pressure-temperature measurements beyond the previous range, we have developed a new isochoric device capable of withstanding liquid nitrogen temperatures and pressures of up to 413 MPa. The device is instrumented with a pressure transducer than can monitor and record the pressures in the isochoric chamber in real time. Measurements were made in a temperature range from - 5°C to liquid nitrogen temperatures for various solutions of pure water and Me2SO (a chemical additive used for protection of biological materials in a frozen state and for vitrification (glass formation) of biological matter). Undissolved gaseous are is carefully removed from the system.ResultsTemperature-pressure data from - 5°C to liquid nitrogen temperature for pure water and other solutions are presented in this study. Following are examples of some, temperature-pressure values, that were measured in an isochoric system containing pure water: (- 20°C, 187 MPa); (-25°C, 216 MPa); (- 30°C, 242.3 MPa); (-180°C, 124 MPa). The data is consistent with the literature, which reports that the pressure and temperature at the triple point, between ice I, ice III and water is, - 21.993°C and 209.9 MPa, respectively. It was surprising to find that the pressure in the isochoric system increases at temperatures below the triple point and remains high to liquid nitrogen temperatures. Measurements of pressure-temperature relations in solutions of pure water and Me2SO in different concentrations show that, for concentrations in which vitrification is predicted, no increase in pressure was measured during rapid cooling to liquid nitrogen temperatures. However, ice formation either during cooling or warming to and from liquid nitrogen temperatures produced an increase in pressure.ConclusionsThe data obtained in this study can be used to aid in the design of isochoric cryopreservation protocols. The results suggest that the pressure measurement is important in the design of "constant volume" systems and can provide a simple means to gain information on the occurrence of vitrification and devitrification during cryopreservation processes of aqueous solutions in an isochoric system
Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2) for tissue ablation.
BackgroundElectrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2).MethodA new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW) was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology.ResultsHistological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue.DiscussionThe E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs) and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation
Prostate cancer treatment with Irreversible Electroporation (IRE): Safety, efficacy and clinical experience in 471 treatments.
BackgroundIrreversible Electroporation (IRE) is a novel image-guided tissue ablation technology that induces cell death via very short but strong pulsed electric fields. IRE has been shown to have preserving properties towards vessels and nerves and the extracellular matrix. This makes IRE an ideal candidate to treat prostate cancer (PCa) where other treatment modalities frequently unselectively destroy surrounding structures inducing severe side effects like incontinence or impotence. We report the retrospective assessment of 471 IRE treatments in 429 patients of all grades and stages of PCa with 6-year maximum follow-up time.Material and findingsThe patient cohort consisted of low (25), intermediate (88) and high-risk cancers (312). All had multi-parametric magnetic resonance imaging, and 199 men had additional 3D-mapping biopsy for diagnostic work-up prior to IRE. Patients were treated either focally (123), sub-whole-gland (154), whole-gland (134) or for recurrent disease (63) after previous radical prostatectomy, radiation therapy, etc. Adverse effects were mild (19.7%), moderate (3.7%) and severe (1.4%), never life-threatening. Urinary continence was preserved in all cases. IRE-induced erectile dysfunction persisted in 3% of the evaluated cases 12 months post treatment. Mean transient IIEF-5-Score reduction was 33% within 12-month post IRE follow-up and 15% after 12 months. Recurrences within the follow-up period occurred in 10% of the treated men, 23 in or adjacent to the treatment field and 18 outside the treatment field (residuals). Including residuals for worst case analysis, Kaplan Maier estimation on recurrence rate at 5 years resulted in 5.6% (CI95: 1.8-16.93) for Gleason 6, 14.6% (CI95: 8.8-23.7) for Gleason 7 and 39.5% (CI95: 23.5-61.4) for Gleason 8-10.ConclusionThe results indicate comparable efficacy of IRE to standard radical prostatectomy in terms of 5-year recurrence rates and better preservation of urogenital function, proving the safety and suitability of IRE for PCa treatment. The data also shows that IRE, besides focal therapy of early PCa, can also be used for whole-gland ablations, in patients with recurrent PCa, and as a problem-solver for local tumor control in T4-cancers not amenable to surgery and radiation therapy anymore
Engaging persons with mental illness and/or substance use disorder in care coordination services: an improvement project at a federally qualified community health center
Background: Mental health and substance use disorders seldom occur in isolation. They frequently accompany each other, as well as a substantial number of chronic general medical illnesses. Consequently, mental health conditions, substance-use disorders, and general health conditions are frequently co-occurring, and coordination of all of these types of health care is essential to improved health outcomes (Institute of Medicine, 2006). The U.S. system of healthcare is failing to identify, engage, and effectively treat people who are suffering from behavioral health conditions (Blanco, Coye, Knickman, Krishnan, Krystal, Pincus, Rauch, Simon, Vitiello, 2016). Because of poor coordination and lack of engagement, people often experience disrupted care and an over-reliance on emergency department and hospital care. At Lowell Community Health Center where this project takes place persons with a primary behavioral health diagnosis contribute to the highest utilization of emergency and inpatient hospital services. In July of 2018, Lowell CHC collaborated with Lowell House, Inc. to form a care coordination program to outreach and engage individuals identified as high utilizers of inpatient and emergency hospital services.
Aim: The aim of this project is to describe the attributes of the population of patients who successfully engaged into care for the first six months of this new program, with recommendations for improvement to inform future program design.
Method: The population of patients who successfully engaged in care in the first 6 months of the program described by independent variables consisting of age, gender, race, and preferred language. Dependent variable consisting of type of outreach. Data was evaluated to determine attributes of patients who successfully engaged in care and if correlations exist between variables and successful engagement.
Results: The first six months of the program implementation demonstrated successful engagement and activation of 17.5% of patients. The average patient is described as low-income, 50-64 years of age, non-English speaking female with dual-diagnosis residing in the greater Lowell area. Themes regarding successful outreach type included telephonic and face-to-face being the most successful method of engagement. Although successful engagement was noted, longer-term efforts and analysis should focus on successful outreach and engagement strategies, emergency room utilization, treatment adherence and service adherence.
Conclusions: The findings of this project indicate that having a team-based, multidisciplinary and multi-cultural approach to care coordination has led to successful engagement of 186 individuals within the first 6 months of this new program
Volume 11, Number 3 – December 1930
Volume 11, Number 3 – December 1930. 45 pages including covers and advertisements. La Croix, John, Christmas Inkling McDonough, John J., Carmelita Skalko, Francis J., Poets and Christmas Lilly, Daniel M., Christmas and Business McMahon, Thomas, The World Cathedral Alumni Notes Lilly, Daniel M., Editorial Mitchell, Christopher, Exchange McWilliams, John C., Chronicle Krieger, John E., Athletic
Supplemental Information 15: Raw Figure 15.
Background Freezing is commonly used for food preservation. It is usually done under constant atmospheric pressure (isobaric). While extending the life of the produce, isobaric freezing has detrimental effects. It causes loss of food weight and changes in food quality. Using thermodynamic analysis, we have developed a theoretical model of the process of freezing in a constant volume system (isochoric). The mathematical model suggests that the detrimental effects associated with isobaric freezing may be reduced in an isochoric freezing system. To explore this hypothesis, we performed a preliminary study on the isochoric freezing of a produce with which our group has experience, the potato. Method Experiments were performed in an isochoric freezing device we designed. The device is robust and has no moving parts. For comparison, we used a geometrically identical isobaric freezing device. Following freezing and thawing, the samples were weighed, examined with colorimetry, and examined with microscopy. Results It was found that potatoes frozen to −5 °C in an isochoric system experienced no weight loss and limited enzymatic browning. In contrast the −5 °C isobaric frozen potato experienced substantial weight loss and substantial enzymatic browning. Microscopic analysis shows that the structural integrity of the potato is maintained after freezing in the isochoric system and impaired after freezing in the isobaric system. Discussion Tissue damage during isobaric freezing is caused by the increase in extracellular osmolality and the mechanical damage by ice crystals. Our thermodynamic analysis predicts that during isochoric freezing the intracellular osmolality remains comparable to the extracellular osmolality and that isochoric systems can be designed to eliminate the mechanical damage by ice. The results of this preliminary study seem to confirm the theoretical predictions. Conclusion This is a preliminary exploratory study on isochoric freezing of food. We have shown that the quality of a food product preserved by isochoric freezing is better than the quality of food preserved to the same temperature in isobaric conditions. Obviously, more extensive research remains to be done to extend this study to lower freezing temperatures and other food items
A statistical model for multidimensional irreversible electroporation cell death in tissue
<p>Abstract</p> <p>Background</p> <p>Irreversible electroporation (IRE) is a minimally invasive tissue ablation technique which utilizes electric pulses delivered by electrodes to a targeted area of tissue to produce high amplitude electric fields, thus inducing irreversible damage to the cell membrane lipid bilayer. An important application of this technique is for cancer tissue ablation. Mathematical modelling is considered important in IRE treatment planning. In the past, IRE mathematical modelling used a deterministic single value for the amplitude of the electric field required for causing cell death. However, tissue, particularly cancerous tissue, is comprised of a population of different cells of different sizes and orientations, which in conventional IRE are exposed to complex electric fields; therefore, using a deterministic single value is overly simplistic.</p> <p>Methods</p> <p>We introduce and describe a new methodology for evaluating IRE induced cell death in tissue. Our approach employs a statistical Peleg-Fermi model to correlate probability of cell death in heterogeneous tissue to the parameters of electroporation pulses such as the number of pulses, electric field amplitude and pulse length. For treatment planning, the Peleg-Fermi model is combined with a numerical solution of the multidimensional electric field equation cast in a dimensionless form. This is the first time in which this concept is used for evaluating IRE cell death in multidimensional situations.</p> <p>Results</p> <p>We illustrate the methodology using data reported in literature for prostate cancer cell death by IRE. We show how to fit this data to a Fermi function in order to calculate the critical statistic parameters. To illustrate the use of the methodology, we simulated 2-D irreversible electroporation protocols and produced 2-D maps of the statistical distribution of cell death in the treated region. These plots were compared to plots produced using a deterministic model of cell death by IRE and the differences were noted.</p> <p>Conclusions</p> <p>In this work we introduce a new methodology for evaluation of tissue ablation by IRE using statistical models of cell death. We believe that the use of a statistical model rather than a deterministic model for IRE cell death will improve the accuracy of treatment planning for cancer treatment with IRE.</p
Deer Frozen Semen Quality in Tris Sucrose and Tris Glucose Extender with Different Glycerol Concentrations
In order to improve Timor deer (Cervus timorensis) frozen semen quality, the influence of sugar and glycerol concentration on semen characteristics of sperm was investigated. The semen was collected from five sexually mature Timor deer using an electroejaculator. The semen was evaluated and divided into six equal tubes and diluted with Tris sucrose glycerol 10% (TSG10); Tris sucrose glycerol 12% (TSG12); Tris sucrose glycerol 14% (TSG14); Tris glucose glycerol 10% (TGG10); Tris glucose glycerol 12% (TGG12); and Tris glucose glycerol 14% (TGG14). The diluted semen was packed in 0.3 ml minitub straw, equilibrated at 5 oC for 4 hours and frozen on liquid nitrogen vapor for 10 minutes. The total of forward motility, viability, acrosome integrity and membrane integrity were assessed in fresh, after equilibration and after thawing. Results demonstrated that the percentage of sperm motility in TSG10was higher (P (63.93±7.23%). The sperm in TSG10 and TSG14 extender were superior in acrosome as well as in membrane integrity. It was concluded that Tris Sucrose with 10% glycerol protected Timor deer sperm better than other combinations
- …