35,258 research outputs found
Calculation of day and night emittance values
In July 1983, the Thermal Infrared Multispectral Scanner (TIMS) was flown over Death Valley, California on both a midday and predawn flight within a two-day period. The availability of calibrated digital data permitted the calculation of day and night surface temperature and surface spectral emittance. Image processing of the data included panorama correction and calibration to radiance using the on-board black bodies and the measured spectral response of each channel. Scene-dependent isolated-point noise due to bit drops, was located by its relatively discontinuous values and replaced by the average of the surrounding data values. A method was developed in order to separate the spectral and temperature information contained in the TIMS data. Night and day data sets were processed. The TIMS is unique in allowing collection of both spectral emittance and thermal information in digital format with the same airborne scanner. For the first time it was possible to produce day and night emittance images of the same area, coregistered. These data add to an understanding of the physical basis for the discrimination of difference in surface materials afforded by TIMS
Middle infrared remote sensing for geology
The middle infrared portion of the spectrum available for geologic remote sensing extends from approximately 3 to 25 micrometers. The source of energy is thermal radiation from surface materials and ambient terrestrial temperatures. The spectral range of usefulness is limited by both the amount of energy available and by transmission of energy through the atmosphere. The best atmospheric window lies between about 8 and 14 micrometers. Remote sensing of the Earth in the infrared is just on the threshold of becoming a valuable geologic tool. Topics which need study include: (1) the used and limitations of the 8 to 14 micrometer region for distinguishing between silicates and nonsilicates; (2) theoretical and experimental understanding of laboratory spectra of rocks and minerals and their relationship to remotely sensed emission spectra; and (3) the possible use of the 3 to 5 and 17 to 25 micrometer portions of the spectrum for remote sensing
A portable spectrometer for use from 5 to 15 micrometers
A field portable spectrometer suitable for collecting data relevant to remote sensing applications in the 8 to 12 micrometer atmospheric window has been built at the Jet Propulsion Laboratory. The instrument employs a single cooled HgCdTe detector and a continuously variable filter wheel analyzer. The spectral range covered is 5 to 14.5 micrometers and the resolution is approximately 1.5 percent of the wavelength. A description of the hardware is followed by a discussion of the analysis of the spectral data leading to finished emissivity and radiance spectra. A section is devoted to the evaluation of the instrument performance with respect to spectral resolution, radiometric precision, and accuracy. Several examples of spectra acquired in the field are included
The TIMS Data User's Workshop
A workshop was held to bring together all users of data from NASA's airborne Thermal Infrared Multispectral Scanner (TIMS). The purpose was to allow users to compare results, data processing algorithms, and problems encountered; to update the users on the latest instrument changes and idiosyncracies, including distribution of the TIMS investigation guide; to inform the users of the wide range of problems that are currently being tackled by other TIMS investigators; to explore ways to expand the user community; to discuss current areas where more basic research is required; and to discuss the future directions of NASA's thermal infrared remote sensing programs. Also discussed were: geology, land use, archeology; and data processing and noise research
Geologic application of thermal inertia imaging using HCMM data
There are no author-identified significant results in this report
Mapping compositional and particle size variations across Silver Lake Playa: Relevance to analyses of Mars TIR data
The high spectral and spatial resolution thermal infrared (TIR) data to be acquired from the upcoming Mars Observer-Thermal Emission Spectra (TES) mission will map the composition and texture of the Martian sediments. To prepare for these data, portions of two remote sensing experiments were conducted to test procedures for extracting surface property information from TIR data. Reported here is the continuing analysis of Thermal Infrared Multispectral Scanner (TIMS) data, field emission spectra, laboratory Fourier Transform Infrared (FTIR) reflectance spectra, and field observations with respect to the physical characteristics (composition, emissivity, etc.) of Silver Lake playa in southern California
Topology of random simplicial complexes: a survey
This expository article is based on a lecture from the Stanford Symposium on
Algebraic Topology: Application and New Directions, held in honor of Gunnar
Carlsson, Ralph Cohen, and Ib Madsen.Comment: After revisions, now 21 pages, 5 figure
Random geometric complexes
We study the expected topological properties of Cech and Vietoris-Rips
complexes built on i.i.d. random points in R^d. We find higher dimensional
analogues of known results for connectivity and component counts for random
geometric graphs. However, higher homology H_k is not monotone when k > 0. In
particular for every k > 0 we exhibit two thresholds, one where homology passes
from vanishing to nonvanishing, and another where it passes back to vanishing.
We give asymptotic formulas for the expectation of the Betti numbers in the
sparser regimes, and bounds in the denser regimes. The main technical
contribution of the article is in the application of discrete Morse theory in
geometric probability.Comment: 26 pages, 3 figures, final revisions, to appear in Discrete &
Computational Geometr
- …