229 research outputs found

    T-Duality and Non-Local Realizations of Supersymmetry in String Theory

    Get PDF
    We study non-local realizations of extended worldsheet supersymmetries and the associated space-time supersymmetries which arise under a T-duality transformation. These non-local effects appear when the supersymmetries do not commute with the isometry with respect to which T-duality is performed.Comment: 6 pages, Latex, Talk presented at the Workshop on Strings, Gravity and Related Topics, Trieste, 29-30 June 199

    Is there an imprint of Planck scale physics on inflationary cosmology?

    Get PDF
    We study the effects of the trans-Planckian dispersion relation on the spectrum of the primordial density perturbations during inflation. In contrast to the earlier analyses, we do not assume any specific form of the dispersion relation and allow the initial state of the field to be arbitrary. We obtain the spectrum of vacuum fluctuations of the quantum field by considering a scalar field satisfying the linear wave equation with higher spatial derivative terms propagating in the de Sitter space-time. We show that the power spectrum does not strongly depend on the dispersion relation and that the form of the dispersion relation does not play a significant role in obtaining the corrections to the scale invariant spectrum. We also show that the signatures of the deviations from the flat scale-invariant spectrum from the CMBR observations due to quantum gravitational effects cannot be differentiated from the standard inflationary scenario with an arbitrary initial state.Comment: 6 pages, uses RevTex4; References added; Final versio

    Holographic bounds on the UV cutoff scale in inflationary cosmology

    Full text link
    We discuss how holographic bounds can be applied to the quantum fluctuations of the inflaton. In general the holographic principle will lead to a bound on the UV cutoff scale of the effective theory of inflation, but it will depend on the coarse-graining prescription involved in calculating the entropy. We propose that the entanglement entropy is a natural measure of the entropy of the quantum perturbations, and show which kind of bound on the cutoff it leads to. Such bounds are related to whether the effects of new physics will show up in the CMB.Comment: 19 pages, 2 figures;(V3):Comments and references adde

    Effective Field Theories and Inflation

    Full text link
    We investigate the possible influence of very-high-energy physics on inflationary predictions focussing on whether effective field theories can allow effects which are parametrically larger than order H^2/M^2, where M is the scale of heavy physics and H is the Hubble scale at horizon exit. By investigating supersymmetric hybrid inflation models, we show that decoupling does not preclude heavy-physics having effects for the CMB with observable size even if H^2/M^2 << O(1%), although their presence can only be inferred from observations given some a priori assumptions about the inflationary mechanism. Our analysis differs from the results of hep-th/0210233, in which other kinds of heavy-physics effects were found which could alter inflationary predictions for CMB fluctuations, inasmuch as the heavy-physics can be integrated out here to produce an effective field theory description of low-energy physics. We argue, as in hep-th/0210233, that the potential presence of heavy-physics effects in the CMB does not alter the predictions of inflation for generic models, but does make the search for deviations from standard predictions worthwhile.Comment: 19 pages, LaTeX, no figures, uses JHEP

    Penrose limits and Green-Schwarz strings

    Get PDF
    We discuss the Green-Schwarz action for type IIB strings in general plane-wave backgrounds obtained as Penrose limits from any IIB supergravity solutions with vanishing background fermions. Using the normal-coordinate expansion in superspace, we prove that the light-cone action is necessarily quadratic in the fermionic coordinates. This proof is valid for more general pp-wave backgrounds under certain conditions. We also write down the complete quadratic action for general bosonic on-shell backgrounds in a form in which its geometrical meaning is manifest both in the Einstein and string frames. When the dilaton and 1-form field strength are vanishing, and the other field strengths are constant, our string-frame action reduces, up to conventions, to the one which has been written down using the supercovariant derivative.Comment: 18 pages, latex, no figures; (v2) relation to ref.14 clarified; (v3) typos corrected, minor change

    The Bekenstein Formula and String Theory (N-brane Theory)

    Get PDF
    A review of recent progress in string theory concerning the Bekenstein formula for black hole entropy is given. Topics discussed include p-branes, D-branes and supersymmetry; the correspondence principle; the D- and M-brane approach to black hole entropy; the D-brane analogue of Hawking radiation, and information loss; D-branes as probes of black holes; and the Matrix theory approach to charged and neutral black holes. Some introductory material is included.Comment: 53 pages, LaTeX. v3: Typos fixed, minor updates, references added, brief Note Added on AdS/CF
    • …
    corecore