869 research outputs found

    Stability of AdS black strings

    Full text link
    We review the recent developements in the stability problem and phase diagram for asymptotically locally AdSAdS black strings. First, we quickly review the case of locally flat black string before turning to the case of locally AdSAdS spacetimes.Comment: 4 pages. Talk included in the 7th Friedmann Seminar, Joao Pessoa - Brazi

    The Final State of Black Strings and p-Branes, and the Gregory-Laflamme Instability

    Full text link
    It is shown that the usual entropy argument for the Gregory-Laflamme (GL) instability for somesome appropriate black strings and pp-branes gives surprising agreement up to a few percent. This may provide a strong support to the GL's horizon fragmentation, which would produce the array of higher-dimensional Schwarzschild-type's black holes finally. On the other hand, another estimator for the size of the black hole end-state relative to the compact dimension indicates a second order (i.e., smooth) phase transition for some otherother appropriate compactifications and total dimension of spacetime wherein the entropy argument is not appropriate. In this case, Horowitz-Maeda-type's non-uniform black strings or pp-branes can be the final state of the GL instability.Comment: More emphasis on a second order phase transition. The computation result is unchange

    Entropy and Temperature of Black 3-Branes

    Get PDF
    We consider slightly non-extremal black 3-branes of type IIB supergravity and show that their Bekenstein-Hawking entropy agrees, up to a mysterious factor, with an entropy derived by counting non-BPS excitations of the Dirichlet 3-brane. These excitations are described in terms of the statistical mechanics of a 3+1 dimensional gas of massless open string states. This is essentially the classic problem of blackbody radiation. The blackbody temperature is related to the temperature of the Hawking radiation. We also construct a solution of type IIB supergravity describing a 3-brane with a finite density of longitudinal momentum. For extremal momentum-carrying 3-branes the horizon area vanishes. This is in agreement with the fact that the BPS entropy of the momentum-carrying Dirichlet 3-branes is not an extensive quantity.Comment: 10 pages, LaTeX, minor revisions. v3: version that appeared in PR

    On equilibration and coarsening in the quantum O(N) model at infinite NN

    Full text link
    The quantum O(N) model in the infinite NN limit is a paradigm for symmetry-breaking. Qualitatively, its phase diagram is an excellent guide to the equilibrium physics for more realistic values of NN in varying spatial dimensions (d>1d>1). Here we investigate the physics of this model out of equilibrium, specifically its response to global quenches starting in the disordered phase. If the model were to exhibit equilibration, the late time state could be inferred from the finite temperature phase diagram. In the infinite NN limit, we show that not only does the model not lead to equilibration on account of an infinite number of conserved quantities, it also does \emph{not} relax to a generalized Gibbs ensemble consistent with these conserved quantities. Nevertheless, we \emph{still} find that the late time states following quenches bear strong signatures of the equilibrium phase diagram. Notably, we find that the model exhibits coarsening to a non-equilibrium critical state only in dimensions d>2d>2, that is, if the equilibrium phase diagram contains an ordered phase at non-zero temperatures.Comment: 11 pages, 9 figure

    Continuous distributions of D3-branes and gauged supergravity

    Get PDF
    States on the Coulomb branch of N=4 super-Yang-Mills theory are studied from the point of view of gauged supergravity in five dimensions. These supersymmetric solutions provide examples of consistent truncation from type IIB supergravity in ten dimensions. A mass gap for states created by local operators and perfect screening for external quarks arise in the supergravity approximation. We offer an interpretation of these surprising features in terms of ensembles of brane distributions.Comment: 19 pages, two figures, latex. v2: reference added, small corrections. v3: corrected unbounded spectrum erro

    Renormalization Group Flows from Holography--Supersymmetry and a c-Theorem

    Get PDF
    We obtain first order equations that determine a supersymmetric kink solution in five-dimensional N=8 gauged supergravity. The kink interpolates between an exterior anti-de Sitter region with maximal supersymmetry and an interior anti-de Sitter region with one quarter of the maximal supersymmetry. One eighth of supersymmetry is preserved by the kink as a whole. We interpret it as describing the renormalization group flow in N=4 super-Yang-Mills theory broken to an N=1 theory by the addition of a mass term for one of the three adjoint chiral superfields. A detailed correspondence is obtained between fields of bulk supergravity in the interior anti-de Sitter region and composite operators of the infrared field theory. We also point out that the truncation used to find the reduced symmetry critical point can be extended to obtain a new N=4 gauged supergravity theory holographically dual to a sector of N=2 gauge theories based on quiver diagrams. We consider more general kink geometries and construct a c-function that is positive and monotonic if a weak energy condition holds in the bulk gravity theory. For even-dimensional boundaries, the c-function coincides with the trace anomaly coefficients of the holographically related field theory in limits where conformal invariance is recovered.Comment: 56 pages, three figures, harvmac. v2: improved referencing, corrected discussion of energy conditions. v3: one more reference fixe

    Critical Behavior in the Rotating D-branes

    Get PDF
    The low energy excitation of the rotating D3-branes is thermodynamically stable up to a critical angular momentum density. This indicates that there is a corresponding phase transition of the N{\cal N}=4 large NN super Yang-Mills theory at finite temperature. On the side of supergravity, we investigate the phase transition in the grand canonical ensemble and canonical ensemble. Some critical exponents of thermodynamic quantities are calculated. They obey the static scaling laws. Using the scaling laws related to the correlation length, we get the critical exponents of the correlation function of gauge field. The thermodynamic stability of low energy excitations of the rotating M5-branes and rotating M2-branes is also studied and similar critical behavior is observed. We find that the critical point is shifted in the different ensembles and there is no critical point in the canonical ensemble for the rotating M2-branes. We also discuss the Hawking-Page transition for these rotating branes. In the grand canonical ensemble, the Hawking-Page transition does not occur. In the canonical ensemble, however, the Hawking-Page transition may appear for the rotating D3- and M5-branes, but not for the rotating M2-branes.Comment: Revtex, 17 pages, minor changes, the discussion on the Hawking-Page transition and references adde

    On non-uniform smeared black branes

    Full text link
    We investigate charged dilatonic black pp-branes smeared on a transverse circle. The system can be reduced to neutral vacuum black branes, and we perform static perturbations for the reduced system to construct non-uniform solutions. At each order a single master equation is derived, and the Gregory-Laflamme critical wavelength is determined. Based on the non-uniform solutions, we discuss thermodynamic properties of this system and argue that in a microcanonical ensemble the non-uniform smeared branes are entropically disfavored even near the extremality, if the spacetime dimension is D≤13+pD \le 13 +p, which is the critical dimension for the vacuum case. However, the critical dimension is not universal. In a canonical ensemble the vacuum non-uniform black branes are thermodynamically favorable at D>12+pD > 12+p, whereas the non-uniform smeared branes are favorable at D>14+pD > 14+p near the extremality.Comment: 24 pages, 2 figures; v2: typos corrected, submitted to Class.Quant.Gra
    • …
    corecore