3,245 research outputs found

    Stellar Equilibrium in 2+1 Dimensions

    Full text link
    The hydrostatic equilibrium of a 2+12+1 dimensional perfect fluid star in asymptotically anti-de Sitter space is discussed. The interior geometry matches the exterior 2+12+1 black-hole solution. An upper mass limit is found, analogous to Buchdahl's theorem in 3+1, and the possibility of collapse is discussed. The case of a uniform matter density is solved exactly and a new interior solution is presented.Comment: 11 pages, revtex, no figure

    Gravitational Collapse of Inhomogeneous Dust in (2+1) Dimensions

    Full text link
    We examine the gravitational collapse of spherically symmetric inhomogeneous dust in (2+1) dimensions, with cosmological constant. We obtain the analytical expressions for the interior metric. We match the solution to a vacuum exterior. We discuss the nature of the singularity formed by analyzing the outgoing radial null geodesics. We examine the formation of trapped surfaces during the collapse.Comment: Accepted for publication in CQ

    Field Theory as Free Fall

    Get PDF
    It is shown that the classical field equations pertaining to gravity coupled to other bosonic fields are equivalent to a single geodesic equation, describing the free fall of a point particle in superspace. Some implications for quantum gravity are discussed.Comment: 18 pages, plain late

    Linearized Gravity in Brane Backgrounds

    Full text link
    A treatment of linearized gravity is given in the Randall-Sundrum background. The graviton propagator is found in terms of the scalar propagator, for which an explicit integral expression is provided. This reduces to the four-dimensional propagator at long distances along the brane, and provides estimates of subleading corrections. Asymptotics of the propagator off the brane yields exponential falloff of gravitational fields due to matter on the brane. This implies that black holes bound to the brane have a "pancake"-like shape in the extra dimension, and indicates validity of a perturbative treatment off the brane. Some connections with the AdS/CFT correspondence are described.Comment: 31 pages, harvmac. v2: minor typo and reference corrections. v3: minor corrections to eqs and discussio

    Spherical and planar three-dimensional anti-de Sitter black holes

    Full text link
    The technique of dimensional reduction was used in a recent paper (Zanchin et al, Phys. Rev. D66, 064022,(2002)) where a three-dimensional (3D) Einstein-Maxwell-Dilaton theory was built from the usual four-dimensional (4D) Einstein-Maxwell-Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner-Nordstr\"om-AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analyzed in some detail.Comment: 27 pages, uses "iopclass" files (Latex2e

    Strong Brane Gravity and the Radion at Low Energies

    Get PDF
    For the 2-brane Randall-Sundrum model, we calculate the bulk geometry for strong gravity, in the low matter density regime, for slowly varying matter sources. This is relevant for astrophysical or cosmological applications. The warped compactification means the radion can not be written as a homogeneous mode in the orbifold coordinate, and we introduce it by extending the coordinate patch approach of the linear theory to the non-linear case. The negative tension brane is taken to be in vacuum. For conformally invariant matter on the positive tension brane, we solve the bulk geometry as a derivative expansion, formally summing the `Kaluza-Klein' contributions to all orders. For general matter we compute the Einstein equations to leading order, finding a scalar-tensor theory with ω(Ψ)Ψ/(1Ψ)\omega(\Psi) \propto \Psi / (1 - \Psi), and geometrically interpret the radion. We comment that this radion scalar may become large in the context of strong gravity with low density matter. Equations of state allowing (ρ3P)(\rho - 3 P) to be negative, can exhibit behavior where the matter decreases the distance between the 2 branes, which we illustrate numerically for static star solutions using an incompressible fluid. For increasing stellar density, the branes become close before the upper mass limit, but after violation of the dominant energy condition. This raises the interesting question of whether astrophysically reasonable matter, and initial data, could cause branes to collide at low energy, such as in dynamical collapse.Comment: 24 pages, 3 figure

    Two dimensional general covariance from three dimensions

    Get PDF
    A 3d generally covariant field theory having some unusual properties is described. The theory has a degenerate 3-metric which effectively makes it a 2d field theory in disguise. For 2-manifolds without boundary, it has an infinite number of conserved charges that are associated with graphs in two dimensions and the Poisson algebra of the charges is closed. For 2-manifolds with boundary there are additional observables that have a Kac-Moody Poisson algebra. It is further shown that the theory is classically integrable and the general solution of the equations of motion is given. The quantum theory is described using Dirac quantization, and it is shown that there are quantum states associated with graphs in two dimensions.Comment: 10 pages (Latex), Alberta-Thy-19-9

    Cosmological scaling solutions of minimally coupled scalar fields in three dimensions

    Full text link
    We examine Friedmann-Robertson-Walker models in three spacetime dimensions. The matter content of the models is composed of a perfect fluid, with a γ\gamma-law equation of state, and a homogeneous scalar field minimally coupled to gravity with a self-interacting potential whose energy density red-shifts as a2νa^{-2 \nu}, where a denotes the scale factor. Cosmological solutions are presented for different range of values of γ\gamma and ν\nu. The potential required to agree with the above red-shift for the scalar field energy density is also calculated.Comment: LaTeX2e, 11 pages, 4 figures. To be published in Classical and Quantum Gravit
    corecore