678 research outputs found

    Braneworlds and Dark Energy

    Get PDF
    In the Randall-Sundrum scenario, we analyse the dynamics of an AdS5 braneworld when conformal matter fields propagate in five dimensions. We show that conformal fields of weight -4 are associated with stable geometries which describe the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous polytropic dark energy on a spherically symmetric 3-brane embedded in the compact AdS5 orbifold. We discuss aspects of the radion stability conditions and of the localization of gravity in the vicinity of the brane.Comment: 12 pages, latex, 3 eps figures. Talk given at the Seventh Workshop on Quantum Field Theory under the Influence of External Conditions, IEEC, CSIC and University of Barcelona, Barcelona, Catalonia, Spain, 5-9 September 2005. Revised version published in the workshop proceedings, J. Phys. A: Mathematical and General. Typos corrected and some changes introduced for clarit

    Simple solutions to the Einstein Equations in spaces with unusual topology

    Full text link
    We discuss simple vacuum solutions to the Einstein Equations in five dimensional space-times compactified in two different ways. In such spaces, one black hole phase and more then one black string phase may exist. Several old metrics are adapted to new background topologies to yield new solutions to the Einstein Equations. We then briefly talk about the angular momentum they may carry, the horizon topology and phase transitions that may occur.Comment: Published versions. Includes referee input. 10 pages, 3 figure

    Transient Astrophysical Pulses and Quantum Gravity

    Full text link
    Searches for transient astrophysical pulses could open an exciting new window into the fundamental physics of quantum gravity. In particular, an evaporating primordial black hole in the presence of an extra dimension can produce a detectable transient pulse. Observations of such a phenomenon can in principle explore the electroweak energy scale, indicating that astrophysical probes of quantum gravity can successfully complement the exciting new physics expected to be discovered in the near future at the Large Hadron Collider.Comment: 7 pages, This essay received an honorable mention in the Gravity Research Foundation Essay Competition, 200

    Exact Microscopic Entropy of Non-Supersymmetric Extremal Black Rings

    Full text link
    In this brief note we show that the horizon entropy of the largest known class of non-supersymmetric extremal black rings, with up to six parameters, is exactly reproduced for all values of the ring radius using the same conformal field theory of the four-charge four-dimensional black hole. A particularly simple case is a dipole black ring without any conserved charges. The mass gets renormalized, but the first corrections it receives can be easily understood as an interaction potential energy. Finally, we stress that even if the entropy is correctly reproduced, this only implies that one sector of chiral excitations has been identified, but an understanding of excitations in the other sector is still required in order to capture the black ring dynamics.Comment: 7 pages. v2: minor improvements, ref adde

    Three-Loop Calculation of the Anyonic Full Cluster Expansion

    Full text link
    We calculate the perturbative correction to every cluster coefficient of a gas of anyons through second order in the anyon coupling constant, as described by Chern-Simons field theory.Comment: 10 pages, PlainTex with macro 'manumac', include

    Rotating Black Holes in Higher Dimensional Brane Worlds

    Full text link
    A black string generaliztion of the Myers-Perry N dimensional rotating black hole is considered in an (N+1) dimensional Randall-Sundrum brane world. The black string intercepts the (N-1) brane in a N dimensional rotating black hole. We examine the diverse cases arising for various non-zero rotation components and obtain the geodesic equations for these space-time. The asymptotics of theresulting brane world geometries and their implications are discussed.Comment: 23 pages, latex, sections rewritten and references adde

    Gravitational Anomaly and Hawking Radiation of Brane World Black Holes

    Full text link
    We apply Wilczek and his collaborators' anomaly cancellation approach to the 3-dimensional Schwarzschild- and BTZ-like brane world black holes induced by the generalized C metrics in the Randall-Sundrum scenario. Based on the fact that the horizon of brane world black hole will extend into the bulk spacetime, we do the calculation from the bulk generalized C metrics side and show that this approach also reproduces the correct Hawking radiation for these brane world black holes. Besides, since this approach does not involve the dynamical equation, it also shows that the Hawking radiation is only a kinematic effect.Comment: 11 pages. v2: minor changes and references adde

    Charged C-metric with conformally coupled scalar field

    Full text link
    We present a generalisation of the charged C-metric conformally coupled with a scalar field in the presence of a cosmological constant. The solution is asymptotically flat or a constant curvature spacetime. The spacetime metric has the geometry of a usual charged C-metric with cosmological constant, where the mass and charge are equal. When the cosmological constant is absent it is found that the scalar field only blows up at the angular pole of the event horizon. The presence of the cosmological constant can generically render the scalar field regular where the metric is regular, pushing the singularity beyond the event horizon. For certain cases of enhanced acceleration with a negative cosmological constant, the conical singularity disappears all together and the scalar field is everywhere regular. The black hole is then rather a black string with its event horizon extending all the way to asymptotic infinity and providing itself the necessary acceleration.Comment: regular article, no figures, typos corrected, to appear in Classical and Quantum Gravit

    Holographic Turbulence in Einstein-Gauss-Bonnet Gravity at Large DD

    Full text link
    We study the holographic hydrodynamics in the Einstein-Gauss-Bonnet(EGB) gravity in the framework of the large DD expansion. We find that the large DD EGB equations can be interpreted as the hydrodynamic equations describing the conformal fluid. These fluid equations are truncated at the second order of the derivative expansion, similar to the Einstein gravity at large DD. From the analysis of the fluid flows, we find that the fluid equations can be taken as a variant of the compressible version of the non-relativistic Navier-Stokes equations. Particularly, in the limit of small Mach number, these equations could be cast into the form of the incompressible Navier-Stokes equations with redefined Reynolds number and Mach number. By using numerical simulation, we find that the EGB holographic turbulence shares similar qualitative feature as the turbulence from the Einstein gravity, despite the presence of two extra terms in the equations of motion. We analyze the effect of the GB term on the holographic turbulence in detail.Comment: 30 pages, 11 figure
    corecore