25 research outputs found

    An ellipsometric study of protein adsorption at the saliva-air interface

    Get PDF
    At the liquid-air interface of human saliva a protein layer is adsorbed. From ellipsometric measurements it was found that the thickness of the surface layer ranged from 400 to 3600 Å and the amount of protein material adsorbed was 9–340 mg/m2. Based on the concentration of protein in the layer the samples could be classified into two groups: a low concentration (ca. 0.15 g/ml) and a high concentration (0.7–1.1 g/ml). In the low concentration group the surface layers appeared to be thin (500–600 Å) while those in the high concentration group appeared to be much thicker (1000–3500 Å). A correlation between the bulk pH and the thickness of the surface layer could be established

    Rheological properties of saliva substitutes containing mucin, carboxymethylcellulose or polyethylenoxide

    Get PDF
    Apparent viscosities at different shear rates were measured for 3 types of saliva substitutes: (a) mucin-containing saliva; (b) substitutes based upon carboxymethylcellulose (CMC), and (c) solution of polyethylenoxide (PEO). The apparent viscosities were compared with those of human whole saliva. Human whole saliva and mucin-containing saliva substitutes appeared to be similar in their rheological properties. Both types of solution are viscoelastic solutions and adjust their apparent viscosities to their biological functions. Preparations containing CMC or PEO are non-Newtonian liquids. From this study it is concluded that mucin-containing saliva substitutes appear to be the best substitutes for natural saliva, as far as rheological properties are concerned

    Rheological properties of human saliva

    Get PDF
    From measurements with a Couette-type viscometer provided with a guard ring it was shown that at the saliva-air interface a protein layer is adsorbed. Measurements of the surface shear modulus of this layer on saliva of 7 healthy subjects were performed at a frequency of about 70 Hz and a temperature of 25 °C. For a surface age of about 1.5 h the surface shear modulus and the surface viscosity were in the order of 1 Nm−1 and 10−3 Nm−1 s, respectively. From ellipsometric measurements it was found that the thickness of the protein layer was approx. 100nm and, using this value, it could be concluded that the shear modulus and the dynamic viscosity were in the order of 107 Pa and 104 Pa s, respectively. The layer appeared to be fragile. Even shear deformation amplitudes of 4 × 10−5 are too high to assure linearity. The complex viscosity (η = η′ − iη′′) of the bulk liquid of human submandibular saliva below the absorbed layer was measured in the frequency range 70 Hz–200 kHz with 3 torsional resonators, each for a different frequency, and a Ni-tube resonator. It was concluded, that the real part of the complex viscosity (η′) decreases from 1.1 mPa s at 70 Hz to a value of 0.95 mPa s at high frequencies. Except at the lowest frequency (70 Hz), the value of η′′ was too small to be detected

    pH measurements with an ion sensitive field effect transistor in the mouth of patients with xerostomia

    No full text
    A transistor pH electrode (ion sensitive field effect transistor), placed in the upper dentures of eleven xerostomia patients and five healthy volunteers, was used to register pH changes in five-, six- and seven-day-old dental plaque. A mouth rinse with a 10% sucrose solution caused a pH fall of about three decades. A significant difference in duration of critical plaque pH was observed; in xerostomia patients, a 10% longer period of pH <5.7 was registrated during 60 min following a sucrose rinse. Normal oral functions were not influenced by the denture with an integrated electrode. This method is usable for plaque pH registration in xerostomia patients
    corecore