9,624 research outputs found

    Helicity sensitive terahertz radiation detection by dual-grating-gate high electron mobility transistors

    Get PDF
    We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiation's polarization state.Comment: 7 pages, 4 figure

    Uncovering Hierarchical Structure in Social Networks using Isospectral Reductions

    Full text link
    We employ the recently developed theory of isospectral network reductions to analyze multi-mode social networks. This procedure allows us to uncover the hierarchical structure of the networks we consider as well as the hierarchical structure of each mode of the network. Additionally, by performing a dynamical analysis of these networks we are able to analyze the evolution of their structure allowing us to find a number of other network features. We apply both of these approaches to the Southern Women Data Set, one of the most studied social networks and demonstrate that these techniques provide new information, which complements previous findings.Comment: 17 pages, 5 figures, 5 table

    Distributed Differential Graphical Game for Control of Double-Integrator Multi-Agent Systems with Input Delay

    Full text link
    This paper studies cooperative control of noncooperative double-integrator multi-agent systems (MASs) with input delay on connected directed graphs in the context of a differential graphical game (DGG). In the distributed DGG, each agent seeks a distributed information control policy by optimizing an individual local performance index (PI) of distributed information from its graph neighbors. The local PI, which quadratically penalizes the agent's deviations from cooperative behavior (e.g., the consensus here), is constructed through the use of the graph Laplacian matrix. For DGGs for double-integrator MASs, the existing body of literature lacks the explicit characterization of Nash equilibrium actions and their associated state trajectories with distributed information. To address this issue, we first convert the N-player DGG with m communication links into m coupled optimal control problems (OCPs), which, in turn, convert to the two-point boundary-value problem (TPBVP). We derive the explicit solutions for the TPBV that constitute the explicit distributed information expressions for Nash equilibrium actions and the state trajectories associated with them for the DGG. An illustrative example verifies the explicit solutions of local information to achieve fully distributed consensus.Comment: The revised version is accepted for publication in IEEE Transactions on Control of Network System

    Gluon Fragmentation to Gluonium

    Get PDF
    The fragmentation of gluons to gluonium states is analyzed qualitatively in the non-perturbative region. The convolution of this mechanism with perturbative gluon radiation leaves us with a hard component in the fragmentation of gluon to gluonium.Comment: 6 pages with 2 figures, LaTe
    • …
    corecore