5,921 research outputs found

    An Adaptive Total Variation Algorithm for Computing the Balanced Cut of a Graph

    Get PDF
    We propose an adaptive version of the total variation algorithm proposed in [3] for computing the balanced cut of a graph. The algorithm from [3] used a sequence of inner total variation minimizations to guarantee descent of the balanced cut energy as well as convergence of the algorithm. In practice the total variation minimization step is never solved exactly. Instead, an accuracy parameter is specified and the total variation minimization terminates once this level of accuracy is reached. The choice of this parameter can vastly impact both the computational time of the overall algorithm as well as the accuracy of the result. Moreover, since the total variation minimization step is not solved exactly, the algorithm is not guarantied to be monotonic. In the present work we introduce a new adaptive stopping condition for the total variation minimization that guarantees monotonicity. This results in an algorithm that is actually monotonic in practice and is also significantly faster than previous, non-adaptive algorithms

    Bayesian Poisson process partition calculus with an application to Bayesian L\'evy moving averages

    Full text link
    This article develops, and describes how to use, results concerning disintegrations of Poisson random measures. These results are fashioned as simple tools that can be tailor-made to address inferential questions arising in a wide range of Bayesian nonparametric and spatial statistical models. The Poisson disintegration method is based on the formal statement of two results concerning a Laplace functional change of measure and a Poisson Palm/Fubini calculus in terms of random partitions of the integers {1,...,n}. The techniques are analogous to, but much more general than, techniques for the Dirichlet process and weighted gamma process developed in [Ann. Statist. 12 (1984) 351-357] and [Ann. Inst. Statist. Math. 41 (1989) 227-245]. In order to illustrate the flexibility of the approach, large classes of random probability measures and random hazards or intensities which can be expressed as functionals of Poisson random measures are described. We describe a unified posterior analysis of classes of discrete random probability which identifies and exploits features common to all these models. The analysis circumvents many of the difficult issues involved in Bayesian nonparametric calculus, including a combinatorial component. This allows one to focus on the unique features of each process which are characterized via real valued functions h. The applicability of the technique is further illustrated by obtaining explicit posterior expressions for L\'evy-Cox moving average processes within the general setting of multiplicative intensity models.Comment: Published at http://dx.doi.org/10.1214/009053605000000336 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Recursive Form of Error Bounds for RFS State and Observation with Pd<1

    Full text link
    In the target tracking and its engineering applications, recursive state estimation of the target is of fundamental importance. This paper presents a recursive performance bound for dynamic estimation and filtering problem, in the framework of the finite set statistics for the first time. The number of tracking algorithms with set-valued observations and state of targets is increased sharply recently. Nevertheless, the bound for these algorithms has not been fully discussed. Treating the measurement as set, this bound can be applied when the probability of detection is less than unity. Moreover, the state is treated as set, which is singleton or empty with certain probability and accounts for the appearance and the disappearance of the targets. When the existence of the target state is certain, our bound is as same as the most accurate results of the bound with probability of detection is less than unity in the framework of random vector statistics. When the uncertainty is taken into account, both linear and non-linear applications are presented to confirm the theory and reveal this bound is more general than previous bounds in the framework of random vector statistics.In fact, the collection of such measurements could be treated as a random finite set (RFS)

    Topology of random clique complexes

    Get PDF
    In a seminal paper, Erdos and Renyi identified the threshold for connectivity of the random graph G(n,p). In particular, they showed that if p >> log(n)/n then G(n,p) is almost always connected, and if p << log(n)/n then G(n,p) is almost always disconnected, as n goes to infinity. The clique complex X(H) of a graph H is the simplicial complex with all complete subgraphs of H as its faces. In contrast to the zeroth homology group of X(H), which measures the number of connected components of H, the higher dimensional homology groups of X(H) do not correspond to monotone graph properties. There are nevertheless higher dimensional analogues of the Erdos-Renyi Theorem. We study here the higher homology groups of X(G(n,p)). For k > 0 we show the following. If p = n^alpha, with alpha - 1/(2k+1), then the kth homology group of X(G(n,p)) is almost always vanishing, and if -1/k < alpha < -1/(k+1), then it is almost always nonvanishing. We also give estimates for the expected rank of homology, and exhibit explicit nontrivial classes in the nonvanishing regime. These estimates suggest that almost all d-dimensional clique complexes have only one nonvanishing dimension of homology, and we cannot rule out the possibility that they are homotopy equivalent to wedges of spheres.Comment: 23 pages; final version, to appear in Discrete Mathematics. At suggestion of anonymous referee, a section briefly summarizing the topological prerequisites has been added to make the article accessible to a wider audienc
    • …
    corecore