622,609 research outputs found
Smart Augmentation - Learning an Optimal Data Augmentation Strategy
A recurring problem faced when training neural networks is that there is
typically not enough data to maximize the generalization capability of deep
neural networks(DNN). There are many techniques to address this, including data
augmentation, dropout, and transfer learning. In this paper, we introduce an
additional method which we call Smart Augmentation and we show how to use it to
increase the accuracy and reduce overfitting on a target network. Smart
Augmentation works by creating a network that learns how to generate augmented
data during the training process of a target network in a way that reduces that
networks loss. This allows us to learn augmentations that minimize the error of
that network.
Smart Augmentation has shown the potential to increase accuracy by
demonstrably significant measures on all datasets tested. In addition, it has
shown potential to achieve similar or improved performance levels with
significantly smaller network sizes in a number of tested cases
Data Augmentation for Skin Lesion Analysis
Deep learning models show remarkable results in automated skin lesion
analysis. However, these models demand considerable amounts of data, while the
availability of annotated skin lesion images is often limited. Data
augmentation can expand the training dataset by transforming input images. In
this work, we investigate the impact of 13 data augmentation scenarios for
melanoma classification trained on three CNNs (Inception-v4, ResNet, and
DenseNet). Scenarios include traditional color and geometric transforms, and
more unusual augmentations such as elastic transforms, random erasing and a
novel augmentation that mixes different lesions. We also explore the use of
data augmentation at test-time and the impact of data augmentation on various
dataset sizes. Our results confirm the importance of data augmentation in both
training and testing and show that it can lead to more performance gains than
obtaining new images. The best scenario results in an AUC of 0.882 for melanoma
classification without using external data, outperforming the top-ranked
submission (0.874) for the ISIC Challenge 2017, which was trained with
additional data.Comment: 8 pages, 3 figures, to be presented on ISIC Skin Image Analysis
Worksho
Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations
We propose a novel data augmentation for labeled sentences called contextual
augmentation. We assume an invariance that sentences are natural even if the
words in the sentences are replaced with other words with paradigmatic
relations. We stochastically replace words with other words that are predicted
by a bi-directional language model at the word positions. Words predicted
according to a context are numerous but appropriate for the augmentation of the
original words. Furthermore, we retrofit a language model with a
label-conditional architecture, which allows the model to augment sentences
without breaking the label-compatibility. Through the experiments for six
various different text classification tasks, we demonstrate that the proposed
method improves classifiers based on the convolutional or recurrent neural
networks.Comment: NAACL 201
- …
