450,027 research outputs found

    Smart Augmentation - Learning an Optimal Data Augmentation Strategy

    Get PDF
    A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks(DNN). There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method which we call Smart Augmentation and we show how to use it to increase the accuracy and reduce overfitting on a target network. Smart Augmentation works by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart Augmentation has shown the potential to increase accuracy by demonstrably significant measures on all datasets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases

    Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations

    Full text link
    We propose a novel data augmentation for labeled sentences called contextual augmentation. We assume an invariance that sentences are natural even if the words in the sentences are replaced with other words with paradigmatic relations. We stochastically replace words with other words that are predicted by a bi-directional language model at the word positions. Words predicted according to a context are numerous but appropriate for the augmentation of the original words. Furthermore, we retrofit a language model with a label-conditional architecture, which allows the model to augment sentences without breaking the label-compatibility. Through the experiments for six various different text classification tasks, we demonstrate that the proposed method improves classifiers based on the convolutional or recurrent neural networks.Comment: NAACL 201

    Data Augmentation of Wearable Sensor Data for Parkinson's Disease Monitoring using Convolutional Neural Networks

    Full text link
    While convolutional neural networks (CNNs) have been successfully applied to many challenging classification applications, they typically require large datasets for training. When the availability of labeled data is limited, data augmentation is a critical preprocessing step for CNNs. However, data augmentation for wearable sensor data has not been deeply investigated yet. In this paper, various data augmentation methods for wearable sensor data are proposed. The proposed methods and CNNs are applied to the classification of the motor state of Parkinson's Disease patients, which is challenging due to small dataset size, noisy labels, and large intra-class variability. Appropriate augmentation improves the classification performance from 77.54\% to 86.88\%.Comment: ICMI2017 (oral session

    Data Augmentation for Skin Lesion Analysis

    Full text link
    Deep learning models show remarkable results in automated skin lesion analysis. However, these models demand considerable amounts of data, while the availability of annotated skin lesion images is often limited. Data augmentation can expand the training dataset by transforming input images. In this work, we investigate the impact of 13 data augmentation scenarios for melanoma classification trained on three CNNs (Inception-v4, ResNet, and DenseNet). Scenarios include traditional color and geometric transforms, and more unusual augmentations such as elastic transforms, random erasing and a novel augmentation that mixes different lesions. We also explore the use of data augmentation at test-time and the impact of data augmentation on various dataset sizes. Our results confirm the importance of data augmentation in both training and testing and show that it can lead to more performance gains than obtaining new images. The best scenario results in an AUC of 0.882 for melanoma classification without using external data, outperforming the top-ranked submission (0.874) for the ISIC Challenge 2017, which was trained with additional data.Comment: 8 pages, 3 figures, to be presented on ISIC Skin Image Analysis Worksho
    • …
    corecore